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Abstract. The ball number of a link L, denoted by ball(L), is the minimum number of solid balls (not necessarily of
the same size) needed to realize a necklace representing L. In this paper, we show that ball(L) ≤ 5cr(L) where cr(L)

denotes the crossing number of L. To this end, we use Lorenz geometry applied to ball packings. The well-known

Koebe-Andreev-Thurston circle packing Theorem is also an important brick for the proof. Our approach yields to
an algorithm to construct explicitly the desired necklace representation of L in R3.

1. Introduction

A chain of balls is a sequence of non-overlapping solid balls in the space where all the consecutive balls are
tangent. The thread of a chain of balls is the polygonal curve formed by joining the centers of consecutive tangent
balls with straight segments. A chain of balls is closed if the last ball is tangent to the first ball. The thread of a
closed chain can be thought of as a polygonal knot in the space. A necklace representation of a link L is a collection
of non-overlapping chains of balls such that theirs threads forms a polygonal link isotopic to L.

Figure 1. A necklace representation of the Figure 8 knot with 20 balls.

In [17], Maehara defined the ball number of a link L, denoted by ball(L), as the minimum number of balls (not
necessarily of the same size) needed to construct a necklace representation of L. Little is known about the behavior
of ball(L). Maehara proved that 9 ≤ ball(31) in [17, Theorem 9]. Some years earlier, Maehara and Oshiro showed
that ball(31) ≤ 12 in [20, Theorem 5] and that ball(22

1) = 8 in [19, Theorem 2]. As far as we are aware, these are
the only known results concerning ball numbers of links.
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Necklace representations can be regarded as a particular case of polygonal representations of links with a strong
geometric condition. Polygonal representations of links have been of great interest not only in mathematics but
also in chemistry and physics. Indeed, polygonal representations has been applied to the study of the DNA and
knotted molecules [11].

In this paper we present the following upper bound to ball(L).

Theorem 1. Let L be a link. Then,
ball(L) ≤ 5cr(L)

where cr(L) denotes the crossing number of L, that is, the minimal number of crossings in any diagram for L.

Our approach allows to come up with an algorithm to construct explicitly the necklace representing the link L.
We are able to compute the coordinates of the centers and the radius of each of the balls of the desired necklace.

Unfortunately, our technique do not allow us to push further the above upper bound. However, we believe that
it can be improved.

Conjecture 1. Let L be a link. Then,
ball(L) ≤ 4cr(L).

Moreover, the equality holds if L is alternating.

Given the connection of the ball number with the so-called Koebe-Andreev-Thurston circle packing Theorem
(see below) a linear bound seems inevitable.

A close related invariant to the ball number is the pearl number of a link L in which the balls have to be of the
same size. The latter seems closely connected to another geometric invariant, the rope length of L. There is known
a quasilinear upper bound on rope length in terms of the crossing number and a linear upper bound is conjectured.
In [10], it is given a sequence of knots such that the rope length grows linearly in the crossing number. It is natural
to ask whether the latter can be refined to pearl necklaces with unequal pearls.

The paper is self-contained and it is organized as follows. In the next section, we briefly introduce some basic
notions on the space of d-balls. We then explain the Lorentzian model for the space of d-balls and its connections
with the inversive geometry. We also discuss some definitions and properties of the inverse product and the action
of the Möbius group on the space of d-balls.

In Section 3, after recalling classical background of ball packing theory we introduce and study some geometric
properties of both pyramidal disk systems and crossing ball systems. These are two fundamental bricks for our
construction.

In Section 4, we prove our main result. Let us give a brief outline of the proof. The strategy runs as follows.
Combining the projection of a link and its associated medial graph we construct a simple planar graph which
contains a subgraph isotopic to the projection of the given link. We then consider a disk packing associated to
such planar graph obtained by using the Koebe-Andreev-Thurston circle packing Theorem. The latter able us to
construct a ball packing by a blowing up. Afterwards, we associate to each crossing a crossing ball system (creating
the appropriate bridges by adding only two extra balls to represent the given link). We finally stick together such
systems. We use inversive geometry in order to verify that our construction works properly.

Finally, in Section 5, we will present an algorithm (based on the approach used in the proof of Theorem 1) that
outputs the coordinates of the centers and the radius of the balls forming the necklace representation of the given
link L. The examples presented in this paper have been done throughout an implementation of this algorithm.
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2. The space of d-balls.

2.1. From spherical caps to d-balls. Some notations and definitions of this section can be found in the PhD
thesis of Chen [7] and the paper of Wilker Inversive geometry [23]. Let d ≥ 1 be an integer. We denote Rd the
euclidean space of dimension d and 〈·, ·〉2, ‖ · ‖ the euclidean inner product and the euclidean norm respectively.
Let Sd be the unit d-sphere of Rd+1 endowed with the induced metric ‖ · ‖S from Rd+1. A d-spherical cap α of
center c ∈ Sd and spherical radius ρ ∈ (0, 2π) is the subset

α = {x ∈ Sd | ‖x− c‖S ≤ ρ}(1)

which gives a partition of Sd in three disjoint subsets: the interior of α, int(α), points of Sd satisfying (1) strictly,
the exterior of α, ext(α), points of Sd not satisfying (1) and the boundary of α, ∂α, points of Sd satisfying the

equality of (1). We note Caps(Sd) the space of d-spherical caps. It is well known that Sd is homeomorphic to R̂d

under the stereographic projection where R̂d := Rd ∪ {∞} is the one-point compactification of Rd. A d-ball of

R̂d is the image of a d-spherical cap under the stereographic projection. We denote Balls(R̂d) the space of d-balls,
isomorphic to Caps(Sd) given by the above construction. Moreover, a d-ball b is called solid ball, hollow ball and
half-space depending on whether the pole of the stereographic projection lies in the exterior, interior or boundary
of the corresponding d-spherical cap αb, see Figure 4.

Figure 2. Examples of a solid ball, a hollow ball and a half-space.

More precisely, a d-ball of R̂d of curvature κ ∈ R will be one of the following subsets:

- Solid ball : {x ∈ R̂d | ‖x− c‖ ≤ 1
κ} when κ > 0.

It is also a standard d-ball of Rd with center c ∈ Rd and radius 1
k .

- Hollow ball :{x ∈ R̂d | ‖x− c‖ ≥ − 1
κ} when κ < 0.

It can be regarded as the union of the exterior of a solid ball with its boundary.

- Half-space: {x ∈ R̂d | 〈x, n〉2 ≤ δ} when κ = 0.
By convention, we choose the normal vector n which points towards the interior. The real number δ
represents the algebraic distance from the boundary to the origin (positive if the origin is contained in the
interior and negative otherwise).

There is a natural embedding of Balls(R̂d) ↪→ Balls(R̂d+1) where a d-ball b of center c and curvature κ (resp. normal

vector n and algebraic distance δ) is mapped to a (d+1)-ball b̂ of center (c, 0) and curvature κ (resp. normal vector
(n, 0) and algebraic distance δ). We call this mapping the blowing up.

2.2. The angle between two d-balls with intersecting boundaries. For d > 1, let b and b′ two d-balls with
intersecting boundaries. We define the angle between b and b′, denoted ](b, b′) ∈ [0, π], as the angle formed by the

vectors −→pc and
−→
pc′ where c and c′ are the centers of b and b′ and p ∈ ∂b∩∂b′, see Figure 3. ](b, b′) does not depend

on the choice of the point in the intersection.

Figure 3. The angle between two 2-balls in gray.
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Two d-balls b and b′ with intersecting boundaries are said to be:

- Internally tangent if ](b, b′) = 0.
- Orthogonal if ](b, b′) = π

2 .
- Externally tangent if ](b, b′) = π.

When the boundaries of b and b′ do not intersect the angle ](b, b′) is not well-defined. In this case we say that
b and b′ are disjoint if they have disjoint interiors and nested otherwise. When b and b′ are nested there is one of
both which is contained in the other.

Remark 1. The blowing up preserves angles.

We notice that the previous definition of angle does not work when d = 1 since the boundary of a 1-ball is
not simply connected. In this case we can define the angle between two intersecting 1-balls b and b′ as the angle

between the 2-balls b̂ and b̂′ obtained by blowing-up.

2.3. The hyperbolic model for Balls(R̂d). Let Hd+1 be the Poincaré ball model of the hyperbolic space of

dimension d + 1 embedded in R̂d+1 as the standard unit (d + 1)-ball. The boundary ∂Hd+1 is exactly the unit

sphere Sd. A d-hyperbolic half-space of Hd+1 is the intersection h := Hd+1∩ b̂h where b̂h is a (d+ 1)-ball orthogonal
to Hd+1. We denote Halfs(Hd+1) the space of hyperbolic half-spaces of Hd+1. At the boundary of Hd+1, the

intersection ∂Hd+1 ∩ b̂h = Sd ∩ b̂h is a d-spherical cap αh which corresponds to a d-ball bh by the stereographic
projection. For any d-ball, the mapping h 7→ αh 7→ bh can be easily reversed so we have the bijections

Halfs(Hd+1)←→ Caps(Sd)←→ Balls(R̂d)(2)

Figure 4. A d-ball and its corresponding hyperbolic half-space.

The notions of interior, exterior and boundary are easily extended for d-hyperbolic half-spaces. For d > 1, two
d-balls b have intersecting boundaries if and only if the corresponding d-hyperbolic half-spaces hb and hb′ have
intersecting boundaries. Moreover, ](b, b′) is equal to the dihedral angle of hb and hb′ measured at a non-common
region.

2.4. The Lorentzian model for Balls(R̂d). The Lorentzian space of dimension d + 2, denoted by Ld+1,1, is a
real vector space of dimension d + 2 equipped with a bilinear symmetric form 〈·, ·〉 of signature (d + 1, 1). The
Lorentzian product of two vectors u and v of Ld+1,1 is the real number 〈u, v〉 and the Gramian of a collection of
vectors V = {v1, . . . , vn} of Ld+1,1 is the matrix

Gram(V) :=

〈v1, v1〉 · · · 〈v1, vn〉
...

. . .
...

〈vn, v1〉 · · · 〈vn, vn〉


If V = {v1, . . . , vd+2} is a basis of Ld+1,1 then the Gram(V) is the matrix of the Lorentzian product in the basis V
which means that the Lorentzian product of two vectors u, v ∈ Ld+1,1 can be computed by

〈u, v〉 = CV(u)T Gram(V)CV(v)(3)

where CV(·) denotes the column-matrix of the Cartesian coordinates respect to V. Generalizing the definition of
Boyd in [4], we define the polyspherical coordinates of a vector u ∈ Ld+1,1 respect to V as the column-matrix

PV(u) =
(
〈v1, u〉 · · · 〈vd+2, u〉

)T
which is related to the Cartesian coordinates by

CV(u) = Gram(V)−1PV(u)(4)

Combining equations (3) and (4) we can compute the Lorentzian product in polyspherical coordinates by

〈u, v〉 = PV(u)T Gram(V)−1PV(v)(5)

In the practice we will use equation (5) to compute the Lorentzian product in different basis.
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From now on, we fix an orthonormal basis V0 = {e1, . . . , ed+2} with Gramian diag(1, . . . , 1,−1). A vector v ∈ Ld+1,1

is called:

- Space-like (resp. time-like) if 〈v, v〉 > 0 (resp. < 0).
- Future-directed (resp. past-directed) if 〈ed+2, v〉 > 0 (resp. < 0).
- Normalized if |〈v, v〉| = 1.

The space of all the normalized space-like (resp. time-like) vectors of Ld+1,1 are usually called de Sitter space
(resp. anti de Sitter space). We denote them by S(Ld+1,1) and T(Ld+1,1) respectively. The anti de Sitter space
can be regarded as the generalization of a two-sheets hyperboloid with two connected components T↑(Ld+1,1) and
T↓(Ld+1,1) formed by the future-directed and the past-directed vectors of T(Ld+1,1) respectively. The hyperboloid
model of the (d+ 1)-hyperbolic space is obtained by taking T↑(Ld+1,1) with the metric induced by the restriction
of the Lorentzian product of Ld+1,1. The isomorphism which maps the hyperboloid model to the Poincaré ball
model can be regarded as the projection Π : T↑(Ld+1,1)→ {ed+2 = 0} from −ed+2, see Figure 5.

A time-like half-space is the subset tv = {u ∈ Ld+1,1 | 〈u, v〉 ≥ 0} where v ∈ S(Ld+1,1). The space of time-like
half-spaces is in bijection to S(Ld+1,1). The image Π(tv ∩T↑(Ld+1,1)) is an hyperbolic half-space of Hd+1 and every
hyperbolic half-space can be obtained in this way. We can then extend the isomorphisms of (2) by

S(Ld+1,1)←→ Halfs(Hd+1)←→ Caps(Sd)←→ Balls(R̂d)(6)

The Lorentzian vector of a d-ball b, denoted vb, is the normalized space-like vector obtained by the previous
isomorphisms.

Figure 5. Geometric interpretation of the isomorphisms showed in (6).

The inversive product of two d-balls b and b′, denoted by 〈b, b′〉 := 〈vb, v′b〉, is the Lorentzian product of their
corresponding Lorentzian vectors. Equivalently, we define the Gramian of a collection of d-balls as the Gramian
of the collection of the Lorentzian vectors of the d-balls. We denote −b the d-ball corresponding to the Lorentzian
vector −vb which is the d-ball with same boundary as b and int(−b) = ext(b). We notice that 〈−b, b′〉 = −〈b, b′〉.
The inversive product is a fundamental tool to encode configurations of d-balls [23]. Indeed,

〈b, b′〉 =

 cosh dH(hb, hb′) if b and b′ are nested
cos](b, b′) if ∂b and ∂b′ intersect
− cosh dH(hb, hb′) if b and b′ are disjoint

where hb and hb′ are the corresponding hyperbolic half-spaces and dH(hb, hb′) is the hyperbolic distance between
∂hb and ∂hb′ . In particular, we have

〈b, b′〉 =


> 1 if b and b′ are nested

1 if b and b′ are internally tangent
0 if b and b′ are orthogonal
−1 if b and b′ are externally tangent

< −1 if b and b′ are disjoint

(7)
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In [23], Wilker defined the inversive coordinates, i(b), of a d-ball b as the column-matrix of the Cartesian
coordinates of vb respect to V0. These coordinates can be given in terms of the curvature and center (normal vector
and algebraic distance for half-spaces) by

i(b) =


κ

2
(2c, ‖c‖2 − 1

κ2 − 1, ‖c‖2 − 1
κ2 + 1)T if κ 6= 0

(n, δ, δ)T if κ = 0

(8)

With the inversive coordinates one can compute the inversive product by

〈b, b′〉 = i(b)TQ i(b′)(9)

where Q = diag(1, · · · , 1,−1) is the Gramian of V0.

2.5. The Möbius group. A Lorentz transformation is a linear transformation of Ld+1,1 which preserves the
Lorentzian product and the Lorentz group, O(d + 1, 1), is the group of all the Lorentz transformations. The
Orthochronous Lorentz group is the subgroup O↑(d+1, 1) < O(d+1, 1) of all the Lorentz transformations preserving
the time direction. The generators of O↑(d+ 1, 1) are the Lorentzian reflections on the boundary of time-like half-
spaces tv

σv : u 7→ u− 2〈u, v〉v(10)

with v ∈ S(Ld+1,1). We notice that σv(v) = −v, σv = σ−v and σv(u) = u if and only if 〈u, v〉 = 0. The
Orthochronous Lorentz group acts on S(Ld+1,1). Composing with the isomorphisms of (6) one gets the following
commutative diagram

O↑(d+ 1, 1) Isom(Hd+1) Aut(Sd) Möb(d)

S(Ld+1,1) Halfs(Hd+1) Caps(Sd) Balls(R̂d)

(11)

where Isom(Hd+1) is the group of isometries of Hd+1, Aut(Sd) is the group of conformal automorphisms of Sd and

Möb(d) is the Möbius Group which can be defined as the group of the continuous automorphisms of R̂d mapping
d-balls to d-balls [22] (some authors make no difference between the last two groups [21]). An element of the
Möbius Group is called a Möbius transformation. An inversion in a d-ball b can be defined as the only Möbius
transformation which maps b to −b and fixes a d-ball b′ if and only if b′ is orthogonal to b [22]. The isomorphisms
of (11) map an inversion in a d-ball b into a Lorentzian reflection on the boundary of a time-like half-space tvb and
therefore the Möbius Group is generated by inversions. We denote σb the inversion in the d-ball b. When b has
zero curvature σb is a reflection on the boundary of b which is an hyperplane of Rd. In addition, the product of
two inversions in d-balls centered at the origin with non-zero curvatures κ and κ′ gives a dilatation of Rd of ratio
(κ′/κ)2. Thus, the group of isometries and dilatations of Rd is a subgroup of Möb(d).
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3. d-ball packings

A collection of d-balls P = {b1, . . . , bn} in R̂d is called a d-ball packing if every pair of d-balls bi, bj ∈ P are either
externally tangent or disjoint. The tangency graph of a d-ball packing P is the simple graph G = (V,E) where
V = {1, . . . , n} and E = {ij | bi and bj are externally tangent}. A simple graph G is said to be d-ball packable if

there is a d-ball packing PG with tangency graph G. In this case G can be embedded in R̂d by taking the centers
of the d-balls of PG and the straight segments between the centers of any tangent pair. This embedding is usually
called the carrier of the d-ball-packing, see Figure 6. The Möbius Group preserves inversive products and tangency
graphs of d-ball packings. Moreover, Möbius transformations maps carriers to carriers [21].

Figure 6. A 2-ball packing with its carrier.

A d-ball packing P is said to be standard if it contains the half-spaces bi = {xd ≤ −1} and bj = {xd ≥ 1} and
we denote this property by Sij P. The tangency point bi ∩ bj is at the infinity and the rest of the d-balls of Sij P
must lie inside the region {−1 ≤ xd ≤ 1}. For an edge ij of the tangency graph of P a standard transformation is
a Möbius transformation φ : P 7→ Sij P. Such a Möbius transformation exists for every edge ij of G and it can be
obtained as the product of an inversion in a d-ball centered at the tangency point bi ∩ bj , an Euclidean isometry
and a dilatation of Rd, see Figure 7.

Figure 7. Example of a standard transformation.

Two d-ball packings P and P ′ will be said to be Möbius congruent if there exists µ ∈ Möb(d) such that
µ : P 7→ P ′. If in addition µ is an Euclidean isometry then we will say that P and P ′ are Euclidean congruent.

Remark 2. Any d-ball packing is Möbius congruent to a d-ball packing formed by solid balls.
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For any simple graph G we define the space of equivalence classes under the action of the Möbius Group

Md(G) := {d-ball packings with tangency graph G}/Möb(d)

We notice that a graph G is d-ball packable if and only if Md(G) is not empty. We say that a d-ball packable
graph is Möbius rigid if all the d-ball packings with tangency graph G are Möbius congruent, which is equivalent to
say that Md(G) ' 1. The advantage of a Möbius rigid graph G is that the all the properties which are preserved
under the action of the Möbius group can be read in just one example of a disk packing PG. An useful result to
compute the space Md(G) is the following:

Lemma 1. Let PG and P ′G be two d-ball packings with same tangency graph G and let ij be an edge of G. Then
PG and P ′G are Möbius congruent if and only if Sij PG and Sij P ′G are Euclidean congruent.

Proof. Let φ : PG 7→ Sij PG and ψ : P ′G 7→ Sij P ′G be two standard transformations.

(Sufficiency) If Sij PG and Sij P ′G are Euclidean congruent then there is an Euclidean isometry γ : Sij PG 7→ Sij P ′G.

Then ψ−1 ◦ γ ◦ φ is a Möbius transformation mapping PG to P ′G.

(Necessity) Let us suppose that there is a Möbius transformation µ : PG 7→ P ′G. Then θ := ψ ◦µ ◦φ−1 is a Möbius
transformation mapping Sij PG to Sij P ′G and leaving fixed the half-spaces bi and bj . Therefore, θ is generated by
inversions in d-balls which are simultaneously orthogonal to bi and bj . A d-ball simultaneously orthogonal to two
parallel half-spaces must be also a half-space. Therefore, θ can be expressed as a product of Euclidean reflections
so θ is an Euclidean isometry. �

The family of d-ball packable graphs are fully characterized for d = 1, 2. Such characterization is still unknown
nowadays when d ≥ 3, even for unit balls. Indeed, it has been proved that recognition of tangency graph is NP-hard
for d = 2, 3, 4, see [1] and [13]. However, many properties and constructions of 3-ball packable graphs has been
found, see [18], [17], [20], [15], [8], [2].

From now on, we shall focus our attention to d-ball packings for d = 2, 3. In order to simplify the notation, we
will call disks (resp. balls) the 2-balls (resp. 3-balls) and the collections of disks and balls will be denoted by D
and B respectively.

Disk packable graph were fully characterized in 1936 by Koebe [14]. The latter was rediscovered by Thurston by
using some results of Andreev on hyperbolic 3-polytopes. The well-known Koebe-Andreev-Thurston circle packing
Theorem (KAT Theorem) states

Theorem 2. A graph G is disk packable if and only if G is a simple planar graph. Moreover, if G is a triangulation
of S2 then G is Möbius rigid.

For a detailed survey on the applications of the KAT theorem we refer the readers to a recent paper of Bowers [3].

3.1. Pyramidal disk systems. The graph of a polyhedron is the graph made by its vertices and edges. Steinitz
proved that the graphs of polyhedra are the 3-connected simple planar graphs. We denote 4, ♦ and � the graphs
of the tetrahedron, octahedron and a square pyramid respectively with the labeling given in Figure 8.

Figure 8. Planar embeddings of the graphs 4, ♦ and �.

Notice that � is isomorphic to the subgraph of ♦ obtained by deleting one vertex. These three graphs are simple
and planar and hence disk packable by the KAT theorem. We call a disk packing DG tetrahedral, octahedral and
pyramidal if G = 4, ♦, � respectively.
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Figure 9. A tetrahedral, octahedral and pyramidal disk packings.

Tetrahedral and octahedral disk packings have been well-studied. Since 4 and ♦ are triangulations of S2, 4
and ♦ are Möbius rigid. Many nice properties about the behaviour of the curvatures of the disks in tetrahedral
and octahedral disk packings can be deduced from the Möbius rigidity, see [16]. Unfortunately, pyramidal disk
packings are not Möbius rigid as we show in the following.

Proposition 3.1. M2(�) ' R.

Proof. Let S−1
x D�[κ1] = {dx, d1, d2, d−1, d−2} be a standard disk packing where d2 and d−2 are two unit disks

tangent to the half-spaces d−1 = {y ≥ 1}, dx = {y ≤ −1} and d1 is a disk of curvature κ1 ∈ R tangent to d2, d−2

and dx.
First of all, notice that 1 < κ1 < 4. Indeed, when κ1 < 1 (resp. κ1 > 4) the disks d1 and d−1 (resp. d2

and d−2) intersect internally and when κ1 = 1 (resp. 4) d1 and d−1 (resp. d2 and d−2) would be tangent and
the tangency graph would be other than �, see Figure 10. We also notice that the collection of disk-packings
{S−1

x D�[κ1]}1<κ1<4 are Euclidean non-congruent. Therefore, by Lemma 1, they represent different equivalence
classes in M2(�). Moreover, these are the only possible standard pyramidal disk packings. Hence, M2(�) is in
bijection to the open interval (1, 4) which is homeomorphic to R. �

Figure 10. Extreme cases with the extra edge (top figures) and the equivalence classes ofM2(�)
(below figures).
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Pyramidal disk packings are one of the main ingredients for constructing the desire necklace. Since � is not
Möbius rigid all the properties and the added structures must be carefully verified in each equivalence class of
M2(�). To this end, in the same flavour as in the above proof, we define for every i = 1, 2 − 1,−2, the standard
curvatures of a pyramidal disk packing D� the numbers 1 < κi < 4 corresponding to the curvature of the disk di
in S−ix D�. The standard curvatures can be used to identify the equivalence class of D� inM2(�). We define also
the minimal standard curvature κ := min{κ1, κ2, κ−1, κ−2}. We notice that a pyramidal disk packing is a subset
of an octahedral disk packing if and only if κ = κ1 = κ2 = κ−1 = κ−2 = 2.

We define a pyramidal disk system the collection of disks (D�,D∗�, dt) formed by

• D� = {dx, d1, d2, d−1, d−2}: a disk-packing with tangency graph �.
• The mirror disks D∗� = {d∗1, d∗2} where d∗1 is the disk orthogonal to d2, d−2, dx and d1 is contained at the

interior of d∗1 and d∗2 is the disk orthogonal to d1, d−1, dx and d2 at the interior of d∗2 .
• The tangency disk dt: the disk which its boundary passes through all the tangency points d1∩d2, d1∩d−2,
d−1 ∩ d2 and d−1 ∩ d−2 and dx is contained at the interior of dt.

• The orthogonality conditions of d∗1 imply that the boundary of d∗1 must be the circle with center (0,−1) which
passes through the tangency point dx ∩ d2. By simple calculations we have that if the radius of d1 is 1/κ1 then the
radius of the boundary of d∗1 is 2/

√
κ1. The orientation for the interior is determined by the condition d1 ⊂ d∗1.

• For d∗2, a disk orthogonal to d1 and dx must be a half-space with boundary the y-axis. As before, the orientation
for the interior comes from the condition d2 ⊂ d∗2 which gives that d∗2 is the half-space {x ≥ 0}.
• Finally for dt, by symmetry, the only circle passing through the tangency points d1 ∩d2, d1 ∩d−2 and d−1 ∩d2

must passes through d−1 ∩ d−2. Again, the orientation is determined from the condition dx ⊂ dt.
Since all the conditions which define the mirror disks and the tangency disks are preserved under Möbius

transformations, the fact that every disk-packing D� is Möbius congruent to a standard disk packing S−1
x D�

implies that the mirror disks and the tangency disks are well-defined for every pyramidal disk packing.

Figure 11. A pyramidal disk system of a standard S−1
x D� with the center of d1 contained in

the y-axis. The boundaries of the mirror disks in dashed and for the tangency disk in dotted. The
label of each disk lies on its interior.
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Disks Curvature Center Inversive coordinates
dx 0 (1) 0 −1 0 −1 1 1
d1 κ1 0 −1 + 1

κ1
0 1− κ1 −1 −1 + κ1

d2 1 2√
κ1

0 2√
κ1

0 2
κ1
− 1 2

κ1

d−1 0 (1) 0 1 0 1 1 1
d−2 1 − 2√

κ1
0 −2− 2√

κ1
0 2

κ1
− 1 2

κ1

d∗1
√
κ1

2 0 −1 0 −
√
κ1

2 − 1√
κ1

− 2−κ1

2
√
κ1

d∗2 0 (0) 1 0 1 0 0 0
dt − κ1√

κ2
1+4

0 2
κ1

0 − 2√
κ2
1+4

κ1√
κ2
1+4

0

Table 1. Curvature, center and inversive coordinates of the disks of the pyramidal disk system
of the Figure 11 in terms of the curvature of d1. When a disk is a half-space the algebraic distance
is given in brackets and the coordinates of the center are the coordinates of the normal vector.

Given the inversive coordinates of Table 1 we may compute the inversive products of the disks of a pyramidal
disk system for each equivalence class of M2(�) in terms of the standard curvatures.

Lemma 2. The following relations hold for every pyramidal disk system (D�,D∗�, dt) and for every i = 1, 2:

(a) 〈di, d−i〉 = −1− 2κi = −1− 8
κj

with i 6= j.

(b) κi = κ−i.

(c) κ1κ2 = 4.

(d) −7 < 〈di, d−i〉 < −1.

(e) (1− 〈d1, d−1〉)(1− 〈d2, d−2〉) = 16.

(f) ∂dt ⊂ d1 ∪ d2 ∪ d−1 ∪ d−2.

(g) d∗1, d∗2 and dt are mutually orthogonal.

(h) σd∗i (dj) =

{
d−j if i = |j|
dj otherwise

for every j ∈ {1, 2,−1,−2, t}.

Proof. The relations can be obtained by simple calculations (combining equation (9) and the inversive coordinates
givein in Table 1). �

The equalities (a), (b) and (c) tell us that a pyramidal disk packing has essentially two different standard
curvatures κ1 and κ2 which are inversely proportional and the minimal standard curvature must verify 1 < κ ≤ 2.
We define the closest disjoint pair of D� the disjoint pair {di, d−i} satisfying κ = κi, i = 1 or 2. The other
disjoint pair will be called the furthest disjoint pair. In the following we use the indices {dc, d−c} and {df , d−f}
with {c, f} = {1, 2} and c 6= f to denote the closest and the furthest disjoint pair of D�. By convention, we take
c = 1 and f = 2 when κ1 = κ2.

Figure 12. The closest and the furthest disjoint pairs in three different cases.
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3.2. The crossing ball system. The main strategy for the proof of our main result is to construct a local ball
packing around each crossing of the give diagram. We then stick together the local ball packings of two consecutive
crossings. These local packings must take into account which piece of the curve goes over/under the other at each
crossing of the link diagram. To this end, we may introduce crossing ball systems which are made from the blowing-
up of a pyramidal disk system. There will be an over/under choice which is determined by a signed parameter
ε ∈ {+,−}.

Remark 3. The blowing up operation preserves the inversive product.

A pyramidal ball packing B� = {bx, b1, b2, b−1, b−2} is a ball packing obtained by blowing-up a pyramidal disk
packing. We define equivalently the closest and furthest disjoint pairs as in the disks case. Let (D�,D∗�, dt) be a
pyramidal disk system. We define for every ε ∈ {+,−}, a crossing ball system (B�,B∗�, bt,Bε∧) as the collection of
balls formed by:

• The pyramid ball packing B� : the blowing-up of D�.
• The mirror balls B∗� = {b∗1, b∗2}: the blowing-up of the mirror disks D∗� = {d∗1, d∗2}.
• The tangency ball bt: the blowing-up of the tangency disk dt.
• The bridge balls Bε∧ = {bε3, bε−3}: the pair of balls satisfying the following conditions:

(i) bε3 is externally tangent to bc, bf , bx, internally tangent to b∗c and contained in the half-space {εz ≥ 0},
where {bc, b−c} and {bf , b−f} denotes the closest and the furthest pair of B�.

(ii) bε−3 is the ball obtained by the inversion of bε3 on the mirror ball b∗c .

We also define the crossing region R of a crossing ball system as

R =

 ⋂
b∈B�

− b

 ∩ bt
Examples of crossing ball systems (highlighting the bridge balls) together with the corresponding crossing region

are illustrated in Figure 13.

Figure 13. The pyramidal ball packing, bridge balls (blue) and crossing region (yellow) of three
crossing ball systems seen from above.
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Lemma 3. Let (B�,B∗�, bt,Bε∧) be a crossing ball system. The bridge balls bε3 and bε−3 are well-defined for every
ε ∈ {+,−}. Moreover, they are externally tangent and both are contained in the crossing region R.

Proof. Consider the collection of balls

B = {bx, bc, bf , b∗c , bεz}
where {bc, b−c} and {bf , b−f} are the closest and the furthest disjoint pair of B� and bεz is the half-space {εz ≥ 0}.
Since the inversive product is preserved by the blowing-up operation, we can compute the Gramian of B by using
the inversive coordinates given in the Table 1 in terms of the minimal standard curvature.

Gram(B) =


1 −1 −1 0 0
−1 1 −1

√
κ 0

−1 −1 1 0 0
0
√
κ 0 1 0

0 0 0 0 1

 and Gram(B)−1 =
1

2


κ
2 −1 κ

2 − 1
√
κ 0

−1 0 −1 0 0
κ
2 − 1 −1 κ

2

√
κ 0√

κ 0
√
κ 2 0

0 0 0 0 2


Since det(Gram(B)) = 4 6= 0 the Lorentzian vectors of B form a basis of L4,1. In order to show that the bridge
balls are well-defined we compute the polyspherical coordinates of bε3 respect to B using the definition of bε3 and
equation (7):

PB(bε3) =


−1
−1
−1
1
λz,3

 with λz,3 ≥ 1.(12)

By using equation (5) we can normalize to get λz,3 =
√

3 + 2
√
κ− κ. It can be checked that λz,3 > 1 for every

1 < κ ≤ 2. The latter implies the existence and the uniqueness of bε3 and hence for bε−3 := σb∗c (b3) for every
pyramidal ball packing. Moreover,

〈bε3, bε−3〉 = 〈bε3, σb∗c (bε3)〉
= 〈bε3, bε3 − 2〈bε3, b∗c〉b∗c〉 by (10)

= 1− 2〈bε3, b∗c〉2

= −1

so bε3 and bε−3 are externally tangent.
A ball b′ is contained in the crossing region of the crossing ball system (B�,B∗�, bt,Bε∧) if and only if

(13) 〈b, b′〉 ≤ −1 for every b ∈ {bx, bc, bf , b−c, b−f} and 〈bt, b′〉 ≥ 1

By combining the invariance of the inversive product under inversions, the angle between the mirrors and the other
balls given in Lemma 2 (h) and the tangency conditions in the definition of bε3 we obtain

〈bx, bε−3〉 =〈σb∗c (bx), σb∗c (bε−3)〉 = 〈bx, bε3〉 = −1,

〈b−c, bε−3〉 =〈σb∗c (b−c), σb∗c (bε−3)〉 = 〈bc, bε3〉 = −1 and

〈bf , bε−3〉 =〈σb∗c (bf ), σb∗c (bε−3)〉 = 〈bf , bε3〉 = −1.

For the rest of inversive products we use Lemma 2 (h), equation (5) and the inversive coordinates of Table 1 :

〈bc, bε−3〉 = 〈σb∗c (bc), σb∗c (bε−3)〉 =〈b−c, bε3〉
=PB(b−c)

T Gram(B)−1PB(bε3)

=
(
−1 −2κ+ 1 −1 −

√
κ 0

)
Gram(B)−1


−1
−1
−1
1√

3 + 2
√
κ− κ


=− 1− 2

√
κ < −1 for 1 < κ ≤ 2.

By the same procedure we obtain:

〈b−f , bε−3〉 =〈σb∗c (b−f ), σb∗c (bε−3)〉 = 〈b−f , bε3〉 = 3− 4√
κ
− 8

κ
< −1 for 1 < κ ≤ 2 and

〈bt, bε−3〉 =〈σb∗c (bt), σb∗c (bε−3)〉 = 〈bt, bε3〉 =
2 + 2

√
κ− κ√

4 + κ2
≥ 1 for 1 < κ ≤ 2.

�
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4. The proof of the main theorem.

4.1. From links to disk packable graphs. The shadow S(L) of a link diagram L is the planar embedding of
the 4-regular graph where the vertices are the crossings and the edges are the arcs between two crossings. The
medial of a planar graph G, denoted med(G), is constructed by placing one vertex on each edge of G and joining
two vertices if the corresponding edges are consecutive on a face of G. We notice that medial graphs are also
4-regular planar graphs not necessarily simple, i.e., they may contain loops and multiple edges. The simplified
medial graph of G, denoted med(G), is the planar graph obtained from med(G) by deleting loops and multiple
edges. We define the pyramidal patchwork of a link diagram L the planar graph given by the simultaneous drawing
of S(L) ∪med(S(L)) and we denote this graph

⊗
(L) = (V⊗, E⊗). The set of vertices can be divided in two sets

V⊗ = V× ∪ V© where V× is the set of vertices of S(L) and V© is the set of vertices of med(S(L)). We call the
vertices of V× the crossing vertices.

Figure 14. (From left to right) A diagram of the Figure 8 knot, the shadow with the crossing
vertices, the medial of the shadow (dashed and white vertices) and the pyramidal patchwork.

We notice that pyramidal patchworks are simple planar graphs which are made out of the union of pyramidal
graphs. If cr(L) is the number of crossings of L then we have

(14) |V⊗| = |V×|+ |V©| = cr(L) +
1

2
(4cr(L)) = 3cr(L)

We now have all the ingredients to proceed with the proof of Theorem 1.

4.2. Proof of theorem 1. Let L be a minimal crossing diagram of L. By the KAT theorem, there is a disk
packing D⊗

(L) with tangency graph
⊗

(L) = (V× ∪ V©, E⊗). Let B⊗(L) be the blowing-up D⊗
(L). For every

crossing vertex x ∈ V×, D⊗
(L) admits a pyramidal disk system (D�(x),D∗�(x), dt(x)) and therefore B⊗(L) admits

a crossing ball system (B�(x),B∗�(x), bt(x),Bεx∧ (x)) with crossing region R(x). Notice that

D⊗
(L) =

⋃
x∈V×

D�(x) and B⊗(L) =
⋃
x∈V×

B�(x).

We choose ε such that the thread of the chain made by the balls (bc, b
ε
3(x), bε−3(x), b−c) is over/under the thread

of the chain (bf , bx, b−f ) according to the diagram L. We define

B∧(L) =
⋃
x∈V×

Bε∧(x)

as the collection of all the bridge balls with the appropriate signs with respect to L for each crossing vertex. Let
BL be the ball collection B⊗(L) ∪B∧(L). If BL were a packing then it would contain a polygonal link in its carrier
isotopic to L (by construction). Moreover, the number of balls |BL| = |B⊗(L)|+|B∧(L)| = 3cr(L)+2cr(L) = 5cr(L)
since L is a minimal crossing diagram.

We need thus to show that BL is a packing. To this end, it is enough to show the following three claims:

(1) B⊗(L) is a packing.
(2) B∧(L) is a packing.
(3) Every ball of B∧(L) is internally disjoint to every ball of B⊗(L).

Claim (1)] It is trivial since the blowing-up operation preserves the inversive product.
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Claim (3)] Let x be a crossing vertex with crossing system (D�(x),D∗�(x), dt(x)). Since D⊗
(L) is a packing

then, as a consequence of Lemma 2 (f), any disk d ∈ D⊗
(L) \ D�(x) must be disjoint to dt(x). Therefore, the

corresponding ball b ∈ B⊗(L) \ B�(x) must be disjoint to bt(x) and thus, b is disjoint to the crossing region R(x)
that contains the bridge balls of Bε∧(x) by Lemma 3. Hence, the bridge balls of Bε∧(x) are disjoint to every ball of
B⊗(L) \ B�(x). Moreover, Lemma 3 also ensures that the bridge balls Bε∧(x) are at most tangent to the balls of
B�(x).

Claim (2)] We first notice that, by Lemma 3, the bridge balls of a crossing system are externally tangent. We
need to show that bridge balls of different crossing systems are also internally disjoint. Let x and x′ be two different
crossing vertices with D�(x) = {dx, d1, d2, d−1, d−2} and D�(x′) = {dx′ , d1′ , d2′ , d−1′ , d−2′}. Let n be the number
of disks in common of D�(x) and D�(x′). We show that in each of the five cases of n = 0, 1, 2, 3, 4 the crossing
regions R(x) and R(x′) are internally disjoint (implying that the bridge balls of Bε∧(x) and Bε∧(x′) are at the most
tangent). If needed we may relabel D�(x′) in order to work with the same labelling of the graphs showed at the
left in each case.

n = 0
SinceD⊗

(L) is a packing then, by Lemma 2 (f), the boundaries ∂dt(x)
and ∂dt(x) are disjoint. Therefore, dt(x) and dt(x

′) are disjoint as
well as bt(x) and bt(x

′). Hence, R(x) ∩R(x′) = ∅.

n = 1
The (possible empty) region dt(x) ∩ dt(x′) must be contained in d1

so bt(x) ∩ bt(x′) is contained in b1. As a consequence, int(R(x)) ∩
int(R(x′)) = ∅.

n = 2
We can apply a standard transformation to get a standard disk pack-
ing S1

2 (D�(x) ∪ D�(x′)) where the disks d1, d2, dt(x) and dt(x
′)

become half-spaces as in Figure 15.

Figure 15. Left, D�(x) ∪ D�(x′) with two common disks, together with their tangency disks.
Right, S1

2 (D�(x) ∪ D�(x′)).

The lines ∂dt(x) and ∂dt(x
′) in S1

2 (D�(x)∪D�(x′)) either intersect in a point lying in d1 ∪ d2 or they are parallel
implying, in both cases, that the region dt(x)∩ dt(x′) is contained in d1 ∪ d2. Therefore, bt(x)∩ bt(x′) is contained
in b1 ∪ b2 and thus int(R(x)) ∩ int(R(x′)) = ∅.
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n = 3
The boundaries of dt(x) and dt(x

′) intersect at the tangency points of d1 ∩ d2

and d−1 ∩ d2, see Figure 16. Therefore dt ∩ d′t is contained in d2 which implies
that bt ∩ b′t is contained in b2 and hence int(R) ∩ int(R′) = ∅.

Figure 16. (Left) D�(x)∪D�(x′) with three common disks, together with their tangency disks.
(Right) S1

2 (D�(x) ∪ D�(x′)).

n = 4
In this case, the tangency graph of D�(x)∪D�(x′) is isomorphic to the octahedral
graph by taking x′ = 3 and x = −3. We have that dt(x) = −dt(x′) and so bt(x)
and bt(x

′) are externally tangent implying that int(R(x)) ∩ int(R(x′)) = ∅.

Figure 17. (Left) D�(x) ∪ D�(x′) with four common disks which leads to the octahedral disk
packing. (Right) S1

2 (D�(x) ∪ D�(x′)).

�
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5. The necklace algorithm

In this section we present an algorithm arised from the constructive proof of our main result. Our necklaces
figures are based on this algorithm.

The balls are given in inversive coordinates. Instead of computing the bridge balls by using the basis with the mir-
ror ball b∗c (as done in the proof of Lemma 3), we use the basis B = {bx, bc, bf , b−c, bεz} which avoids the computation
of b∗c . To this end, we need the inversive products λ−c,3 := 〈b−c, bε3〉 = 〈bc, bε−3〉 and λz,3 := 〈bεz, bε3〉 = 〈bεz, bε−3〉.
These values are given in the proof of Lemma 3 in terms of the minimal standard curvature by λ−c,3 = −1− 2

√
κ

and λz,3 =
√

3 + 2κ− κ. The minimal standard curvature can be computed by using Lemma 2 (a) obtaining

κ =
1−λc,−c

2 = 8
1−λf,−f

where λc,−c := 〈bc, b−c〉 and λf,−f := 〈bf , b−f 〉. In order to obtain a disk packing from the

tangency graph we use the well-known algorithm of Collins and Stephenson given in [9] where the radius of the
outer disks and the visual precision can be chosen. In all our examples we set the outer radii to be equal to 1 and
precision 10−4.

Table 2. Necklace algorithm

Input: A link diagram L with n crossings of a link L.
Output: A necklace representation BL of the link L with 5n balls.
Algorithm:

1. Construct the pyramidal patchwork
⊗

(L) = (V× ∪ V©, E⊗)

2. Construct a disk packing D⊗
(L) of tangency graph

⊗
(L)

3. Construct a ball packing B⊗(L) obtained by blowing-up D⊗
(L)

4. Set B∧(L) = {}, Q = diag(1, 1, 1, 1,−1), bz =
(
0 0 1 0 0

)T
5. For x ∈ V× do:

(a) Give to B�(x) a pyramid labeling B�(x) = {bx, b1, b2, b−1, b−2}
(b) Compute the inversive product λ = bT1 Qb−1

(c) If λ ≥ −3 then:
i. B = (bx|b1|b2|b−1|bz), κ = 1−λ

2

(d) else:
i. B = (bx|b2|b1|b−2|bz), κ = 8

1−λ

(e) λ−c,3 = −1− 2
√
κ, λz,3 =

√
3 + 2κ− κ

(f) b3(x) = (
(
−1 −1 −1 λ−c,3 λz,3

)
B−1Q)T

(g) b−3(x) = (
(
−1 λ−c,3 − 1 −1 λz,3

)
B−1Q)T

(h) If the thread made by the bridge balls is under-crossing in L then:
i. b3(x)← diag

(
1 1 −1 1 1

)
b3(x)

ii. b−3(x)← diag
(
1 1 −1 1 1

)
b−3(x)

(i) B∧(L) ← B∧(L) ∪ {b3(x), b−3(x)}
6. BL = B⊗(L) ∪ B∧(L)
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Knot 41
Ball x y z r
1 0. 0. 0. 1.
2 0.8498 0.6641 0. 0.0785
3 1. 0.6603 0. 0.0718
4 1.1502 0.6641 0. 0.0785
5 2. 0. 0. 1.
6 1. 0.3213 -0.1097 0.056
7 0.9571 0.3768 -0.0593 0.0303
8 0.9553 0.4226 0. 0.0447
9 0.977 0.4699 0.0318 0.0163
10 1. 0.495 0.0352 0.018
11 1.0718 0.5359 0. 0.0718
12 1.134 0.5796 -0.09 0.046
13 1.175 0.6784 -0.1552 0.0793
14 1. 1.7321 0. 1.
15 0.825 0.6784 0.1552 0.0793
16 0.866 0.5796 0.09 0.046
17 0.9282 0.5359 0. 0.0718
18 1. 0.4737 0. 0.0232
19 1.0447 0.4226 0. 0.0447
20 1. 0.3342 0. 0.0544

Link 731
Ball x y z r
1 0. 0. 0. 1.
2 0.4068 1. -0.1882 0.0958
3 0.519 1.083 -0.1184 0.0603
4 0.6344 1.0947 0. 0.1054
5 0.7338 1.0234 0.0655 0.0334
6 0.7762 0.9686 0.071 0.0362
7 0.8407 0.7983 0. 0.1593
8 1. 0.5458 0. 0.1392
9 2. 0. 0. 1.
10 1.4814 0.9131 0.1095 0.0558
11 1.4327 0.9925 0.0815 0.0415
12 1.3656 1.0947 0. 0.1054
13 1.3204 0.9813 -0.0604 0.0307
14 1.2858 0.9279 -0.065 0.0331
15 1.1593 0.7983 0. 0.1593
16 1.1253 0.6243 0.1733 0.0886
17 1. 0.4638 0.2589 0.1323
18 2. 2. 0. 1.
19 1.0949 1.4501 0.1314 0.0671
20 1. 1.3938 0.0956 0.0489
21 0.8873 1.3285 0. 0.1127
22 1. 1.211 0. 0.0501
23 1.1302 1.0863 0. 0.1302
24 1.2695 0.9745 0. 0.0485
25 1.3864 0.9006 0. 0.0898
26 1.546 1. 0. 0.0982
27 0. 2. 0. 1.
28 1. 1.5198 0. 0.1093
29 1.1127 1.3285 0. 0.1127
30 1.0501 1.2136 0.0693 0.0354
31 1. 1.162 0.0714 0.0365
32 0.8698 1.0863 0. 0.1302
33 0.7305 0.9745 0. 0.0485
34 0.6136 0.9006 0. 0.0898
35 0.454 1. 0. 0.0982

Knot 817
Ball x y z r
1 0. 0. 0. 1.
2 0.5168 0.958 0.2146 0.1094
3 0.6549 1.0442 0.1381 0.0704
4 0.7919 1.0508 0. 0.1243
5 0.9356 1.0528 -0.0671 0.0343
6 0.9982 1.0317 -0.0625 0.0319
7 1.081 0.9676 0. 0.09
8 1.1502 0.8904 0.0455 0.0232
9 1.164 0.8497 0.0395 0.0202
10 1.1595 0.7925 0. 0.0494
11 1.0879 0.7759 0. 0.0241
12 1.0007 0.7799 0. 0.0633
13 0.902 0.7895 0. 0.0358
14 0.7559 0.8166 0. 0.1127
15 0.5757 0.9527 0. 0.1132
16 0.1772 1.9921 0. 1.
17 1.1772 1.4541 0. 0.1356
18 1.3308 1.212 0. 0.1511
19 1.4928 1.1678 -0.1645 0.084
20 1.6347 1.0364 -0.2477 0.1265
21 2. 0. 0. 1.
22 1. 0.4186 0.2005 0.1025
23 0.9104 0.5354 0.1241 0.0634
24 0.895 0.6486 0. 0.1053
25 0.876 0.7684 -0.0535 0.0273
26 0.8848 0.8205 -0.0502 0.0256
27 0.9271 0.9005 0. 0.0779
28 0.9571 1.0187 0. 0.044
29 1.0243 1.2064 0. 0.1554
30 1.0559 1.3765 -0.1686 0.0861
31 1.1772 1.533 -0.2525 0.1289
32 2.1772 1.9921 0. 1.
33 1.5588 1.0432 0. 0.1327
34 1.3111 0.9157 0. 0.1459
35 1.1441 0.8682 0. 0.0278
36 1.0843 0.8388 0. 0.0389
37 1.0718 0.7954 0.0305 0.0156
38 1.0717 0.7615 0.0372 0.019
39 1.1051 0.6481 0. 0.1049
40 1. 0.4677 0. 0.1039

References

1. H. Breu and D. Kirkpatrick, On the complexity of recognizing intersection and touching graphs of disks. In: Brandenburg F.J.
(eds) Graph Drawing, GD (Passau 1995), LNC, Springer, Berlin, Heidelberg, 1027 (1996), 88–98.

2. K. Bezdek and S. Reid, Contact graphs of unit sphere packings revisited, J. Geom. 104(1) (2013), 57–83.

3. P. L. Bowers, Combinatorics encoding geometry: the legacy of Bill Thurston in the story of one theorem, arXiv:2008.12357 (2020).
4. D. W. Boyd, A new class of infinite sphere packings, Pacific Journal of Mathematics 50(2) (1974), 283–398.

5. T. E. Cecil, Lie Sphere Geometry, Springer-Verlag (1992).

6. H. Chen, Apollonian ball packings and stacked polytopes, Discrete Comput. Geom. 55(4) (2016), 80–826.
7. H. Chen, Ball Packings and Lorentzian Discrete Geometry, Freie Universitat Berlin (2014).

8. H. Chen and J.-P. Labbé, Lorentzian Coxeter Systems and Boyd-Maxwell ball packings, Geometriae Dedicata 174 (2015), 43–73.
9. C. Collins and K. Stephenson, A circle packing algorithm, Comput. Geom. Theor. and App. 25 (2003), 233–256.

10. Y. Diao and C. Ernst, Realizable powers of ropelengths by nontrivial knot families, J. Geom. and Topology 4(2) (2004), 197–208.

11. E. A. Elrifai, On sitck number of knots and links, Chaos, Solitions and Fractals 27 (2006), 233–236.
12. G. Guettler and C. Mallows, A generalization of Apollonian packing of circles. (2008)
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