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Abstract
In algebraic topology, persistent homology is a method that computes the homology of an object growing in
time. Intuitively, this technique detects holes and provides information on their importance. By combining this
topological approach to a notion of distance, it is possible to obtain geometric information on those holes. This
paper presents an ongoing work about computation and measure of holes in 3D volumetric objects. Our approach
uses mainly the geometric and topological properties of the medial axis.
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1. Introduction

In this paper, we introduce a new ongoing work about mea-
suring holes in 3D shapes. Paradoxically, holes are intuitive
objects that are topologically quite complex to define. How-
ever their topological definition doesn’t take into account
their geometrical properties. We propose ideas about how to
geometrically measure the topological holes of a 3D object.
Our approach uses the medial axis. It is a geometric notion
that preserves topological features, that is why it is suited to
our problem. More precisely, we believe that the computa-
tion of the medial axis gives enough information to associate
two independent measures to holes. One measure stands for
the thickness whereas the other stands for the breadth of the
hole.

Concerning applications, hole measures provides a rele-
vant object descriptor, as highlighted in [CCSG∗09], that
can be useful for classification. They can also have biologi-
cal applications, such as pollen characterization and porosity
estimation.

Our approach uses persistent homology, which is a
method that computes the homology of an object growing in
time. Instead of performing persistent homology algorithms
on the analyzed object (which requires a precise and
expensive tetrahedralization), we show that performing
these algorithms on the medial axis is sufficient to obtain
the thickness and breadth of the holes of the object.

The structure of the paper is as follows. In section 2 we in-
troduce previous works on hole measures and our two main
tools: persistent homology and medial axes. Our approach is
explained in section 3: we first give an overview with nota-
tions and we then detail the two parts of our method. The
second part mostly consists in conjectures. In section 4 we
present algorithmic prospects for our approach, more specif-
ically we describe methods for computing the medial axis.
Conclusion is provided in section 5.

2. Related Works

2.1. Persistent Homology

Given a topological set X , let Hq(X) be the homology
group of dimension q over the field Z2. Every Hq(X) is
a vector space of dimension βq , where βq is called the q-th
Betti number. Intuitively, the Betti numbers are counting the
holes in X: in 3D, β0 is the number of connected compo-
nents, β1 is the number of tunnels and β2 is the number of
cavities in X . See [Hat] for more details on homology and
more generally algebraic topology.

Persistent homology is a recent theory, closely related to
Morse theory. It somehow "equips" topological artifacts with
a notion of "size" by following their appearance and disap-
pearance through the growth of a discrete object along time.
More precisely, persistent homology captures the changes in
homology along a filtration of a topological set X .

Definition 2.1. A filtration of X is a sequence (Ft)t∈I of
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Figure 1: Each row is the same object: a hollow two-tore
with a plain tore (in grey). It has 2 connected components, 5
tunnels (in red) and a single cavity (in blue). Its Betti num-
bers are: β0 = 2, β1 = 5 and β2 = 1.

subsets of X verifying :

t≤ t′ =⇒ Ft ⊂ Ft′
Fsup(I) =X

Where I can be a real interval or a finite ordered set.

Persistence keeps track of the birth and death of holes
along the filtration. This information is summed up trough
a persistence diagram:
Definition 2.2. The persistence diagramD(F ) of a filtration
F is a multi set of R2. An element (x,y) of multiplicity βx,yq
means that βx,yq holes of dimension q were born in Fx and
died entering Fy .

Therefore y−x is the “lifetime” of the corresponding hole
and significant holes are points of D(F ) lying far from the
diagonal y = x.

In practice, X is a finite discrete complex and the filtra-
tion consists in labeling every cell with their date of birth.
The standard algorithm to compute the persistence diagram
of a filtration on a simplicial complex X uses matrix oper-
ations on the boundary operator [OPT∗15, EH08]. It has a
complexity in O(n3) where n is the number of simplices in
X .

2.2. Hole Measures

Persistent homology can provide geometrical information on
topological artifacts if the filtration has a geometrical mean-
ing. An example of such a filtration is induced by the signed
distance function:
Definition 2.3. Given a set X in Rn, the signed distance

function of X is the following function:

sdf : Rn→ R
x 7→ −d(x,∂X) if x ∈X
x 7→ d(x,∂X) if x /∈X

Where d is the euclidean distance in Rn.
Proposition 2.1. The sequence

(
sdf−1(]−∞, t[)

)
t∈R

is a

filtration. We refer to it as the sdf -filtration.

Starting from the persistence of this filtration, Gonzalez-
Lorenzo and al. define geometric measures of topological
holes (in [GLBMR16]). Indeed, if we consider a hole that
was born at time x≤ 0 and dies at time y ≥ 0 (a point (x,y)
in the up-left quarter of the diagram) we can define the thick-
ness T and the breadth B of the hole as follow:

T =−x B = y

Intuitively, the thickness of the hole corresponds to the
fragility of the hole handles. The breadth, on the other side,
corresponds to the size of the hole. Those measures can be
associated with balls: the T -ball (respectively the B-ball)
is the ball of radius T (respectively B) whose center is the
point that induced the birth of the hole at time −T (respec-
tively the point that induced the death of the hole at time
+B) (see Figure 2(b)). Points that induce birth or death of
a hole are called topologically critical points and play a key
role in our work.

In [GLBMR16], these measures (called TB-measures)
are introduced and computed for cubical complexes. How-
ever their definition takes advantage of the structure of cu-
bical complexes: the regularity of voxels actually captures
an information of geometric nature right into the topological
notion of adjacency. As a consequence, in this context, the
"distance to the center of the shape" is naturally captured by
the signed distance transform, ie. by dilatation/erosion op-
erations. In simplicial complexes, this is no longer the case
and our present work intends to extend holes measures to
this wider context.

2.3. Medial Axis

The medial axis of a set X is a geometric object that has a
large number of characterizations [TDS∗16]. In this paper
we will take the following definition:
Definition 2.4. If X is embedded in Rn, the medial axis
M(X) ofX is the set of points in Rn that have two or more
closest points on ∂X (the boundary of X).
We refer to the inner medial axis as

M̌(X) =M(X)∩X

and to the outer medial axis as

M̂(X) =M(X)∩ (Rn\X) = M̌(Rn\X)

(see an illustration of the medial axis in Figure 2(a))
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(a) (b)

Figure 2: (a): X in grey with its medial axis: M̌(X) in red
and M̂(X) in blue.
(b): the T -ball (in red) and the B-ball (in blue) of the only
1-hole in X .

The medial axis is widely used for different purposes such
as skeleton creation or reconstruction problems [TDS∗16].
Concerning topology, it is known that M̌(X) preserves ho-
motopy :
Proposition 2.2 ( [Lie03]). For all bounded open X:

M̌(X)≈X (1)

Where ≈ stands for homotopy equivalence.

The combination of geometrical and topological proper-
ties has made it a powerful tool and has lead to several works
at the intersection of those two fields. For example Zhou et
al [ZJH07] developed a method to repair the topology of
some 3D shapes.

3. Measuring Holes of 3D Volumetric Objects

3.1. Overview of the Approach

The aim of our work is to find a method to compute hole
measures (i.e. TB-balls) on 3D meshes. More precisely
we are dealing with 3D compact volumes, the boundary of
which is an oriented mesh (2-manifold). In this section, our
theoretical work is more general, so we will be using Rn
instead of R3.

The persistence homology of the sdf -filtration provides
different holes, which can be classified in two non-disjoint
categories:

• Early-birth holes, whose birth date is before 0 (called an
early-birth date).

• Late-death holes, whose death date is after 0 (called a
late-death date).

Remark. We also use the terms late-birth for birth date after
0, and early-death for death date before 0.

The holes we are interested in are those in the object at t= 0,
i.e. those in the intersection of the early-birth holes and the
late-death holes. We refer to them as the TB-holes, as they

are the holes associated with the TB-balls: T is the opposite
of the early-birth date and B is the late-death date.

Our approach intends to compute the TB-balls and relies
on two main points, detailed in sections 3.3 and 3.4:

1. Considering a bounded open X ⊂ Rn, we show that the
persistent homology of its inner medial axis using the sdf -
filtration provides every early-birth and early-death date
with their associated topologically critical points. Partic-
ularly, it provides the T -balls of X .

2. We believe that the same technique on the outer medial
axis with the opposite filtration provides every early-birth
and early-death date of the complementary of X in the n-
sphere, with their critical points.
Relying on Alexander duality, we think it is then possible
to deduce every late-death and late-birth date of X with
their critical points. Particularly, we can deduce the B-
balls of X .

All in all, the persistent homology of each part of the medial
axis should provide the TB-balls.

3.2. Preliminaries and Notations

Theoretically, our goal is to obtain the persistence diagram
of the sdf -filtration and the topologically critical points as-
sociated to each hole.
Definition 3.1. Given an open bounded set X ⊆ Rn and
its signed distance function sdf , we define the sdf filtration
function:

Ft : P(Rn)→ P(Rn)

U 7→ sdf−1 (]−∞, t[) ∩ U

(see an illustration in Figure 3) In particular, if t ≥ 0,
we have F−t(U) ⊂ X for all U ⊂ Rn and F−t(V ) =
sdf−1 (]−∞,−t[) for all V ⊃X .

The filtration we are interested in is the sdf -filtration,
which is equal to

(
Ft(Rn)

)
t∈R.

In section 3.4 we will establish conjectures on the
complementary of X in the n-sphere Sn. Precisely, we are
mapping Rn to Sn by identifying all the points that are
located at infinity in Rn to a single point p∞. Particularly
we can consider that we have Rn ⊂ Sn.

Definition 3.2. Given X a bounded open in Rn, the com-
plementary of X in Sn is:

Xc = Sn\X

We denote sdfc its signed distance function in Sn which is
equal −∞ on p∞ and −sdf elsewhere.
Definition 3.3. We denote Fct the sdf filtration function of
Xc in Sn:

Fct : P(Sn)→ P(Sn)

U 7→ (sdfc)−1 ([−∞, t]) ∩ U
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(a) (b)

Figure 3: t is a positive real.
(a): the t-erosion of X (in green). Formally, it is F−t(Rn),
which is equal toF−t(X) or simply sdf−1 (]−∞,−t[). We
can see that the erosion creates a new component but delete
a 1-hole.
(b): the t-dilatation of X (in green). Formally, it is Ft(Rn).
We can see that the dilatation creates a new 1-hole.

We refer to (Fct (Sn))t∈R as the sdfc-filtration.

Intuitively, erosion in the sdf -filtration correspond to
dilatation in the sdfc-filtration and vice-versa.

Definition 3.4. We denoteMSn(X) the medial axis of X
computed on Sn but with the metric distance of Rn.
It can be noted that MSn(X) is equal to M(X)∪ {p∞}
and p∞ belongs to Xc. (See an illustration ofMSn(X) in
Figure 5)

3.3. Obtaining T -Balls from the Inner Medial Axis

The medial axis has been a subject of interest since it is a
geometrical object that has a powerful topological property
(see Proposition 1). In this part, a deeper link between the
topology and the geometry of M̌(X) and X is introduced:
the persistence diagram of the sdf -filtration on ]−∞,0] is
the same as the one obtained with the sdf -filtration restricted
to M̌(X).
This result is stated in theorem 3.3. It implies that comput-
ing the persistent homology of M̌(X) on ]−∞,0] provides
early-birth and early-death dates with their associated topo-
logically critical points and therefore the T -balls of X .

To prove this result we first need to prove the following
theorem:
Theorem 3.1. Given X an open bounded set of Rn and
t≥ 0:

F−t
(
M̌(X)

)
= M̌

(
F−t(X)

)
An illustration of the theorem is showed in Figure 4.

The proof is geometrical and can be found in the appendix
5.
This implies the following property:

Figure 4: An illustration of theorem 3.1. The red curve is the
medial axis of the green shape: M̌(F−t(X)). It is also the
intersection between the medial axis ofX (the dashed curve)
and the green shape: F−t

(
M̌(X)

)
.

Corollary 3.2. Given X an open bounded set of Rn and
t≥ 0:

F−t
(
M̌(X)

)
≈F−t(X)

Proof. As t ≥ 0, sdf−1 (]−∞,−t[) ⊂ X so we have
F−t(X) = sdf−1 (]−∞,−t[).
Hence, F−t(X) is open because sdf is continuous and
]−∞, t[ is open. Moreover it is bounded because it is con-
tained in X .
Using equation 1 on F−t(X) we obtain:

M̌(F−t(X))≈F−t(X)

Combined to theorem 3.1 we get the wanted result.

Theorem 3.3. Given X an open bounded set of Rn and its
associated functions Ft:

D
((
Ft(Rn)

)
t∈]−∞,0]

)
=D

((
Ft(M̌(X))

)
t∈]−∞,0]

)
Proof. At every step t ∈] − ∞,0] of the filtration we
have Ft(Rn) = Ft(X). By corollary 3.2, Ft(Rn) and
F−t

(
M̌(X)

)
have the same homotopy type. Therefore,

they have isomorphic homology groups (see theorem 2.10
in [Hat] (p.111)).
Hence, their persistent homology and persistence diagrams
are similar.

As a consequence the persistence diagram of X on ]−
∞,0] can be obtained by performing the persistence algo-
rithm on its inner medial axis. As we are on ]−∞,0], this
diagram gives every early-birth and early-death date, but we
also need the ball centers in order to fully obtain the T -balls.
Fortunately we have the following proposition, which can be
deduced from results in [CPP08] and [Sie96]:
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Proposition 3.4. The topologically critical points of
(Ft(Rn))t∈]−∞,0] are exactly the topologically critical

points of
(
Ft(M̌(X))

)
t∈]−∞,0].

As the standard persistence algorithm also computes the
topologically critical points, performing the persistence al-
gorithm on M̌(X) fully provides the T -balls.

3.4. Obtaining B-balls using the Outer Medial Axis and
Alexander Duality

This part is an ongoing work in which we establish conjec-
tures. We aim to capture the persistence on [0,+∞[ (i.e. the
B-balls, late-death and late-birth dates) using the outer me-
dial axis of X and the Alexander duality, which provides
topological links between X and its complementary.
Proposition 3.5 (Alexander Duality, [Hat], (p.255)). IfK is
a locally contractible nonempty compact of Sn, then:

∀i, H̃i(S
n\K)' H̃n−i−1(K)

Where H̃j and H̃j are the reduced homology and cohomol-
ogy groups, and ' stands for isomorphism.

This implies that we can obtain the Betti numbers of K
from those of its complement in Sn. For instance, in 3D:

β0(K) = β2(S
3\K)+1

β1(K) = β1(S
3\K)

β2(K) = β0(S
3\K)−1

(See an illustration of Alexander duality in Figure 5)

Figure 5: An illustration of Alexander duality and the medial
axis MS2(X). In 2D, Alexander duality implies β0(X) =
β1(X

c)+1 and β1(X) = β0(X
c)−1:

X (in grey) has one component and one 1-hole.
Xc (in green) has two components and no 1-hole.
In red: M̌S2(X). In blue: M̂S2(X) which equals to
M̌S2(Xc).

Similarly to section 3.3, we think the following link be-
tween the topology and the geometry of X and its outer me-
dial axis M̌Sn(Xc) is true: the persistence diagram of the
sdf -filtration on [0,+∞[ can be deduced from the diagram
of the sdfc-filtration restricted to M̌Sn(Xc).

This result is stated in conjecture 3.9. It implies that com-
puting the persistent homology on M̌Sn(Xc) provides late-
death and late-birth dates of X .

Our idea is to prove this result using the same reasoning
as the one in section 3.3 leading to theorem 3.3.
To do so we need to prove the three following conjectures,
which corresponds to "Alexander duals" of theorems in sec-
tion 3.3. We believe they are true under reasonable assump-
tions on X , such as the fact that X is a bounded open and
X ∪∂X has the same homotopy type as X .
Conjecture 3.6 (dual of theorem 3.1). Given t≥ 0:

Fc−t
(
M̌Sn(Xc)

)
= M̌Sn

(
Fc−t(Xc)

)
Conjecture 3.7 (dual of corollary 3.2). Given t≥ 0:

Fc−t
(
M̌Sn(Xc)

)
≈Fc−t(Xc)

Conjecture 3.8 (dual of theorem 3.3).

D
((
Fct (Sn)

)
t∈]−∞,0]

)
=D

((
Fct (M̌Sn(Xc))

)
t∈]−∞,0]

)
Conjecture 3.8 implies that the persistence diagram of

M̌Sn(Xc) with the sdfc-filtration gives every early-birth
and early-death date of Xc.
Relying on Alexander duality, we believe that these infor-
mation provides every late-death and late-birth date of X ,
according to the following transformation:
Conjecture 3.9.

D
((
Ft(Rn)

)
t∈[0,+∞[

)
= D̃

((
Fct (M̌Sn(Xc))

)
t∈]−∞,0]

)
Where D̃ stands for a deduction from the underlying dia-
gram following Alexander duality: the i-holes of coordinates
(x,y) becomes (n− i− 1)-holes of coordinates (−y,−x),
except for the oldest 0-hole which has no dual. A 0-hole
whose death date is infinite and birth date is before 0 is also
added.

The main idea of the proof would be that at each step τ ≥
0 we have Fc−τ (Sn) = Sn\Fτ (Rn) (using the definitions
ofFc−τ andFτ ). By Alexander duality, this means that when
a i-hole appears in (Fct (Sn))t∈]−∞,0] at step−τ , a (n−i−
1)-hole disappears in (Ft(Rn))t∈[0,+∞[ at step τ , and vice-
versa.

To fully find the B-balls of X , we also need the dual of
proposition 3.4:
Conjecture 3.10 (dual of proposition 3.4). The topologi-
cally critical points of (Ft(Rn))t∈[0,+∞[ are exactly the

topologically critical points of
(
Fct (M̌Sn(Xc))

)
t∈]−∞,0],

but appears in the inverse order.

Hence, the persistence diagram of the outer medial axis
M̌Sn(Xc) with the sdfc-filtration induces the deduction of
every late-death and late-birth date of X with their critical
points. Therefore, it fully provides the B-balls.
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B

−T

Figure 6: A partial persistence diagram. The red elements
(dots and semi-lines) are early-birth and early-death dates
obtained from persistence on M̌(X) (see section 3.3)
whereas those in blue are late-death and late-birth dates ob-
tained by Alexander duality from persistence on M̂Sn(X)
(see section 3.4).
The magenta dots are the potential holes, obtained from
matching the red lone T values with the blue lone B val-
ues. There are actually four unknown dots and they cannot
be two on the same line or on the same column.

All in all, computing the persistence of the inner and outer
medial axes of X (using their appropriate filtration) gives
enough information to obtain every TB-ball ofX . However,
a subtle topological information is missing: we are not able
to decide which T corresponds to which B, therefore we
only get a partial persistence diagram of X (see an illustra-
tion on Figure 6).

4. Algorithmic prospects

Our method can be summed up in the following algorithm:

1. Compute the inner and outer medial axis of X .
2. Perform persistence algorithm on the inner medial axis

with the sdf -filtration on ]−∞,0] and retain its topolog-
ically critical points.

3. Perform persistence algorithm on the outer medial axis
with the sdfc-filtration on ]−∞,0] and retain its topo-
logically critical points.

4. Using Alexander duality, deduce from the two last results
the partial persistence diagram of X with its TB-balls.

In practice, we first need to compute a discrete represen-
tation of the medial axis and label its elements with their
sdf value. In addition we want this representation to provide
topologically critical points of X .
Different methods computing such a representation have
been created:
Sundar et al [SMM20] proposed a geometrical method for
computing the medial axis with its critical points using
touching discs. However their approach works in 2D and can
hardly be generalized to 3D. Culver et al [CKM04] proposed
an algorithm that exactly computes the medial axis of a poly-
hedron, but it is highly expensive in time.

Dey et al [DZ04] proposed a method, based on Voronoi
diagrams of point sampling, that approximates the medial
axis. Although their approach is quite fast, their approxima-
tion lacks topological guarantees. But even if the represen-
tation of the medial axis is not exact, we think that the sta-
bility of persistent homology should limit the errors in our
method (see [CSEH05] for details about stability). Finally,
Giensen et al [GRB11] proposed another method based on
Voronoi diagrams that provides topological guarantees and
critical points. Instead of computing M(X), their method
computes the core of X , which is a subset of the medial axis
having the following desired properties: it contains the crit-
ical points of the medial axis (so the one of X) and it has
the same homotopy type as X . Yet, this algorithm requires
an ε-sampling of the boundary of X with ε≤ 0.14 to ensure
homotopy:
Definition 4.1 ( [GRB11]). An ε-sampling of the surface
∂X of X is a set P ⊂ ∂X such that:

∀x ∈ ∂X, ∃p ∈ P / d(x,p)≤ ε d(x,M̌(X))

(see an illustration in Figure 7(b))

(a) (b)

Figure 7: (a): An approximation of the medial axis, as a sub-
complex of the Voronoi diagram of a sampling of ∂X .
(b): An ε-sampling of ∂X and its associated Voronoi dia-
gram. We see that this sampling is adaptive to the local thick-
ness of the shape.

The two last approaches are promising and use Voronoi
diagrams, which are often considered as discrete medial axes
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(in fact they corresponds to medial axes of discrete sets of
points) (see Figure 7 for approximations using Voronoi di-
agrams). An advantage of these approaches is the compu-
tation of topologically critical points because their discrete
counterparts are simply the intersections of Voronoi cells
with their dual Delaunay cells [GRB11]. However, both ap-
proaches need a sampling of the boundary of X , which can
be challenging to build.

5. Conclusion and Future Works

We are currently developing a new method to compute mea-
sures of holes in 3D volumetric shapes. Our algorithm is
based on the theory of persistent homology and uses the no-
tion of medial axis, which provides a powerful link between
geometry and topology. Our method pretends to compute ev-
ery TB-ball of the analyzed shape.

An advantage of the approach is that we compute persis-
tent homology on the medial axis which has one dimension
less than the object, for instance if X is a volumetric 3D
object, M(X) is set of curves and surfaces. However, the
medial axis computation in 3D is far from free, and we are
interested in specific part of it. That is why it will be crucial
to find an appropriate method for its computation in order to
finally implement our approach. Voronoi subset and distance
flow approaches [DZ04,GRB11,CPP08] seem suited for our
problem.

Although our approach provides every TB-ball, strangely
enough, medial axis persistence (and Alexander duality)
seem not to pair lone T and B-balls. Hence, they would not
provide a complete persistence diagram. Actually, this in-
formation might have a geometrical nature (this difference
between topology and geometry may be occluded in cubi-
cal complexes). However, we assume that the geometry of
medial axes with respect toX actually provides this connec-
tion information. Therefore, an idea is to build a filtration on
a simplicial complex derived from a Voronoi approximation
of the medial axis (as in Figure 7(a)).
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Appendix

We want to prove the theorem 3.1 :
Theorem. Given X an open bounded set of Rn and t≥ 0 :

F−t
(
M̌(X)

)
= M̌

(
F−t(X)

)
Let t > 0 (case t= 0 is trivial).

Firstly, let’s prove the two following lemmas:
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Lemma 5.0.1.

∂F−t(X)⊂ sdf−1({−t})

Proof of lemma 5.0.1. t > 0 so F−t(X) = sdf−1(] −
∞,−t[) and is open because sdf is continue.
Moreover the complementary of sdf−1(]−∞,−t[) in Rn is
sdf−1([−t,+∞[).
By definition, the boundary of an open T is ∂T = T ∩T c,
where T is the closure of T and T c its complementary.
Hence, the boundary of F−t(X) is:

∂F−t(X) = sdf−1(]−∞,−t[)∩sdf−1([−t,+∞[)

By continuity of sdf , the sdf value of a point in
sdf−1(]−∞,−t[) is in ]−∞,−t].
Therefore, the sdf value of a point in ∂F−t(X) is in
]−∞,−t]∩ [−t,+∞[= {−t}.

Lemma 5.0.2.

∀c ∈ F−t(X), d(c,∂X) = d(c,∂F−t(X))+ t

Proof of lemma 5.0.2. Let’s take c in F−t(X).

• We choose s ∈AF−t(X)(c) and ŝ ∈AX(s). We have the
following inequality by triangular inequality:

d(c,∂X)≤ d(c, ŝ)
≤ d(c,s)+d(s, ŝ)
≤ d(c,F−t(X))+d(s,∂X)

By using the definition of AF−t(X)(c) and AX(s).
s ∈ ∂F−t(X) so d(s,∂X) = t by lemma 5.0.1. This im-
plies:

d(c,∂X)≤ d(c,F−t(X))+ t (2)

• Conversely, by contradiction, suppose

d(c,∂X)< d(c,∂F−t(X))+ t (3)

Then let ŝ ∈AX(c). As d(c,∂X)≥ t > 0, we define:

λ=
d(c,∂X)−d(c,∂F−t(X))+ t

2d(c,∂X)

s= λc+(1−λ)ŝ

Thus, we have:

d(c,s) = (1−λ)d(c, ŝ) = d(c,∂X)+d(c,∂F−t(X))− t
2

d(c,s)< d(c,∂F−t(X)) using 3.

So, as c is in F−t(X), we have s ∈ F−t(X).
Moreover we have:

d(s, ŝ) = λ d(c, ŝ) =
d(c,∂X)−d(c,∂F−t(X))+ t

2
d(s, ŝ)< t using 3.

So d(s,∂X) ≤ d(s, ŝ) < t, therefore we have s /∈
F−t(X).
By contradiction we have d(c,∂X)≥ d(c,∂F−t(X))+t.

Thus, with 2 we get:

d(c,∂X) = d(c,∂F−t(X))+ t

ŝ

x̂0x̂1

x1 x0

s

c

d(c,∂X)

t

d(c,∂Ft(X))

Figure 8: Scheme of the different points defined in the proof
of the theorem 3.1 and lemma 5.0.2.

Proof of theorem 3.1.

• Proof of F−t
(
M̌(X)

)
⊂ M̌

(
F−t(X)

)
:

let c∈F−t
(
M̌(X)

)
. We have directly c∈ M̌(X) so we

choose x̂0, x̂1 ∈AX(c) such that x̂0 6= x̂1.
As d(c,∂X)≥ t > 0, we define:

µ=
t

d(c,∂X)

x0 = µc+(1−µ)x̂0

x1 = µc+(1−µ)x̂1

We easily have x0 6= x1, now let’s show that they belong
to AF−t(X)(c) in order to prove that c ∈ M̌

(
F−t(X)

)
.

Let i ∈ {0,1}. Let’s prove that xi ∈ ∂F−t(X). We have:

d(xi, c) = (1−µ)d(c, x̂i)
= d(c,∂X)− t

So by lemma 5.0.2: d(xi, c) = d(c,∂F−t(X)).
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We build the following sequence:

xki =
1
k
c+

(
1− 1

k

)
xi

(xki )k∈N converges to xi and stays in F−t(X) as
d(c,xki ) = (1− 1/n)d(c,xi) < d(c,∂F−t(X)). There-
fore, xi ∈ F−t(X).
Moreover, we have:

d(xi, x̂i) = µ d(c, x̂i)

= t

So, as x̂i ∈ ∂X , d(xi,∂X)≤ t.
This implies xi /∈ F−t(X). xi is in the closure of
F−t(X) but not in it, therefore it belongs to ∂F−t(X).

As we have xi ∈ ∂F−t(X) and d(c,∂F−t(X)) =
d(c,xi) we have xi ∈AF−t(X)(c).

This conclude the fact that c ∈ M̌
(
F−t(X)

)
.

• Proof of M̌
(
F−t(X)

)
⊂F−t

(
M̌(X)

)
:

let c ∈ M̌
(
F−t(X)

)
. We choose x0,x1 ∈ AF−t(X)(c)

such that x0 6= x1.

Let i ∈ {0,1}. Let x̂i ∈ AX(xi). xi ∈ ∂F−t(X) so by
lemma 5.0.1 we have d(x̂i,xi) = t. By triangular inequal-
ity we have:

d(x̂i, c)≤ d(x̂i,xi)+d(xi, c) (4)

≤ t+d(c,∂F−t(X))

≤ d(c,∂X) by lemma 5.0.2

And by minimality d(c,∂X)≤ d(x̂i, c).
As a result: d(c,∂X) = d(x̂i, c) so x̂i belongs to AX(c)
(because x̂i is in ∂X as it is in AX(xi)).

In addition, we are in the equal case of the triangular in-
equality 4, which means that x̂i, xi and c are co-linear.
As d(c,∂X)> 0, we get:

x0 = µc+(1−µ)x̂0

x1 = µc+(1−µ)x̂1

(with µ=
t

d(c,∂X)
)

Hence we easily have x̂0 6= x̂1 since x0 6= x1. There-
fore |AX(c)| > 1 so c belongs to M̌(X) and sdf−1(]−
∞,−t[).
This conclude the fact that c ∈ F−t

(
M̌(X)

)
.
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