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Résumé
This paper investigates a new approach, based on persistence and persistent homology, for pollens classification
and recognition from 2D high resolution images. We show that it is possible to identify front and back pores of
pollens from a combination of thickness-breadth measures of holes (computed by persistent homology) and an
original grayscale persistence defined in the present work.
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1. Introduction

Palynology studies, modern and fossil palynomorphs, such
as pollen or spores. It is deeply related to different scien-
tific fields, including geology, botany, paleontology. In the
later case, palynology can help with modeling past vege-
tation and understand the changes which occur in this era.
However, most studies (classification, characterisation) are
still carried out manually by the lack of efficient automatic
analysis tools. Pollens assessments are tedious and time con-
suming tasks, requiring high quality in palynology.

Recent developments in computer vision are paving the
way for the automation of pollens detection and recognition
in images. But these works are still partial and fail (among
other things) to characterise pollen structures. As pollens
are cavernous structures essentially characterised by their
holes, the present work intends to investigate a topological
approach for pollen analysis. Besides a general geometrical
analysis, our method is based on algebraic topology (per-
sistent homology) to detect holes of pollens. Starting from
the thickness-breadth measure of holes defined by Gonzalez-
Lorenzo and al. ( [GLBMR16]), we introduce an original no-
tion of grayscale persistence. Holes are thus identified by a
combination of imaging and topological features.

The next section describes a brief state of the art both in
palynology and computational algebraic topology. Then in

section 3 we describe data and section 4 gives a brief intro-
duction to algebraic topology. In section 5, we describe our
approach and we describe our experiments in section 6. Last,
we conclude on our work and perspectives in section 8.

2. State of the art

The first microscopic observations of pollen date back to
the 17th century. From the 20th century onwards, with the
diversification of chemical preparation processes to extract
pollen, as well as the development of light microscopes
(LM) and electron scanning microscopes (SEM), palynol-
ogy underwent a great expansion. Palynologists’ studies fo-
cus mainly on the morphological characterization of pollens
in order to classify them.

Classification is usually done using pattern recognition
methods. Algorithms describe the pollen with different vari-
ables which can then be sorted by multivariate classifiers.
Morphological and geometrical descriptors are the most
common choices ( [ZFH∗04], [CHD∗06]). They provide
measures of the pollen such as its perimeter, concavity, con-
vexity or circularity. Other approaches investigated texture
descriptors in order to compare the “ornamentation” of pol-
lens (see for instance [MLM∗13]).

Finally, some studies add other intrinsic characteris-
tics such as pores or colpi to enrich the classification (
[CHD∗06]). The extraction of these characteristics is done
by different image analysis techniques (template matching
method, Hough transforms). In this paper, we present a new
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method for detecting pollen holes based on homological per-
sistence in order to better characterize pollens with net struc-
ture (composed of lots of holes). Our works are preliminary
as they provide a new descriptor that should be further inte-
grated into the classification.

3. A brief introduction to pollens structures and pollens
data

Automatic pollen recognition from images is still an open
problem. Indeed, the appearance of pollens largely varies
from one specimen to another. In spite of many attempts,
classification and recognition approaches based on the anal-
ysis of images remain unsatisfactory. One reason for these
failures is that actually, pollens are mostly characterised by
the structure of their "emptiness", of their holes. And such
structures can hardly be captured by imaging techniques.

Pollens are grains of roughly ovoid shape containing spe-
cific hollow structures. Their general configuration is:

Figure 1: Illustration of the pollen structures : Pores struc-
tures (upper left), colporus structures (upper right), net
structures (lower)

In the present article, we focus exclusively on net struc-
tures (Fig.1 (lower)). Our data are taken from the pollen
database of the French Institute of Pondichery and more pre-
cisely focus on pollens of the plant family "Amaranthaceae".

Pollens images acquired by optical microscopes provide
high resolution colour 2D data. Once cropped to isolate
pollens, images typically have a 600× 600 resolution. As
pollens are light-permeable, focus can be set on different
“planes”. Fig.2 shows two different focalisations on the
same pollen: hence images of a single pollen can be ex-
tremely varied (which is a major challenge for pollen analy-
sis).

Figure 2: Input images from Achyranthes Aspera, first focus
(left image), second focus (right image)

4. Computational homology and persistent homology

4.1. A brief overview of algebraic topology and
computational homology

Topology studies the shape of objects in their total-
ity/globality. More precisely, topology classifies objects up
to a continuous deformation, that is without taking into ac-
count their geometry. In this context, algebraic topology in-
tends to characterize the topology of spaces by means of al-
gebraic tools. More precisely, its associates to any geometric
object an algebraic object (generally a group) so that prop-
erties of this group provide information on the topology of
the initial object. This concept contrasts with a geometric ap-
proach of spaces and shapes. Indeed, in Euclidean geometry
two "objects" are equivalent if they have the same geomet-
ric characteristics, in other words, if we can transform one
into the other by a rotation, translation ... From a topologi-
cal point of view, two objects as equivalent if they differ up
to a continuous deformation, and thus, topology is actually
strongly related to "holes" of the object.

More precisely, algebraic topology operates on discrete
structures encoding adjacency (in the present paper, we use
cubical complexes which are, roughly speaking, sets of ver-
tices (0-cells), edges (1-cells), squares (2-cells), cubes (3-
cells)... plus closure properties). Algebraic topology asso-
ciates chain complexes to these geometric objects. A chain
complex C is a sequence:

· · ·Cp+1
∂p+1−−−→ Cp

∂p−−→ Cp−1 · · ·C2
∂2−→ C1 −→ 0

where Cp is a vector space built as linear combinations of p-
cells with coefficients taken in a field (or ring) A and ∂p is a
linear application called “boundary application” computing
the boundary of cells. Intuitively, the boundary of an edge is
the difference between both of its vertices, the boundary of a
square is the sum (with appropriate signs) of its neighboring
edges... A key property of the boundary operator is:

∀p ∈ N ∂p∂p+1 = 0
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and hence Im(∂p+1) ⊆ ker(∂p). As a consequence, we
can define the following group quotient:

Hq(C) = ker(∂q)/Im(∂q+1)

Hq(C) is called the q-th homological group of C. It can
always be decomposed as Hq(C) ' Zβq ⊕Tq(C) (where
Tq(C) is called the “torsion group” and is a sum of cyclic
groups which is actually 0 up to dimension 3). Coefficient
βq is called the q-th Betti number of C. It has a strong geo-
metrical meaning as it gives the number of holes of dimen-
sion q of the object C. Fig.3 illustrates this intuition for an
object containing holes of dimension 0, 1 and 2.

Figure 3: Illustration of Betty numbers on a hollow double
torus and a full torus: (up) β0 = 2, (middle) β1 = 5, (down)
β2 = 1.

β0 gives the number of connected components (ie. the
number of “clusters” of contactless objects), β1 the number
of tunnels from which we deduce the 1-dimension holes of
an object and finally β2 counts the number of cavity (hence
assessing wether the object is hollow or full).

4.2. Persistent homology and measuring holes

Persistent homology is a recent branch of algebraic topology.
Inspired by Morse theory, it introduces a notion of “scale” of
topological holes thanks. Given a filtration of a complex K
(simplicial, cubical...): K1 ⊆K2 ⊆ ·· · ⊆Kn =K, persis-
tent homology follows the dynamics of holes. As i increases
from 1 to n, holes appear and disappear (as they merge with
other holes). Hence, one can associate to each hole a pair of
indices corresponding to its birth and death. Such a pair is
called a persistance interval.

In [GL16] and [GLBMR16], Aldo Gonzalez-Lorenzo and
al. Use persistent homology to define geometric measures
of topological holes. They first define a filtration “captur-
ing” the geometry of the object based on its signed distance
transform. The resulting filtration is:

K−m = ∅ ⊆K−(m−1) ⊆ ·· · ⊆K−1 ⊆K0 =K

⊆K1 ⊆ ·· · ⊆Kn =B

where K−1, . . . ,K−m are successive erosions of K,
K1, . . . ,Kn are successive dilatations of K and B is the

bounding box of the object. Persistence intervals (i, j) with
i < 0 and j > 0 correspond to holes of K and actually pro-
vide two (independent) measures of this hole: −i give the
thickness of the hole and j give its breadth. Fig.4 illustrates
these measures. Breadth and thickness are clearly indepen-
dent as they provide an information about the difficulty, re-
spectively, to fill or break the hole.

Figure 4: Illustration of the TB-measure of two holes: thick-
ness (red) and breadth (blue).

These measures provide even more precise information
about holes as the computation of persistence entails to
locate them. Gonzalez-Lorenzo and al. Thus define thick-
ness/breadth balls and prove the stability of such a represen-
tation even in the presence of noise. Fig.5 illustrates these
balls for a well known 3D-model.

Figure 5: Illustration of TB-balls on a 3D model: (left)
breadth balls, (right) thickness balls.

The present work investigates the possibility to use such
measures to characterise net structures from images of pol-
lens.

5. Our approach

This section describes our approach as summarized in Fig6.

As illustrated in section 3, pollen images can be extremely
diversified and pollens appear on changing backgrounds.
Hence, before extracting the pollen net structure, we first
preprocess images in order to enhance contrasts, extract con-
tours and remove the background. On the one hand, this
preprocess is a basis for calculating geometrical character-
istics of the pollen (barycentre, maximum and minimum ex-
tension). Such data are actual important characteristics for
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Figure 6: Overview of the approach

Palynologist and their measure “by hand” on images is an
arduous task. On the other hand, this preprocess is used to
prepare the data to be fed in the TB-holes algorithm [GL16].

Then, for each grayscale value h, we binaries the image,
thus creating a "black and white" image, ie. a binary object
for which we can compute homological information. For
each such binary image, the algorithm then extracts holes
and associate TB-balls.

In view of the diversity of images, choosing an optimal
grayscale value h is a delicate issue and “traditional” ap-
proaches based on histogram computations all failed. How-
ever, we show that the sequence of binarized images with
thresholds ranging from 0 to 255 forms a filtration. As a
consequence, it is possible to compute the persistence of
each hole through this filtration. In our case the persistence
of a hole is the range of gray levels where the hole is de-
tected in the sequence of binary images. Therefore, the larger
the persistence interval, the more relevant the hole. We call
“grayscale’ persistence” this step. Let us eventually point out
that, in order to combine this grayscale persistence infor-
mation with the geometric information about TB-balls, we
chose to compute the grayscale 1-dimension persistence of
only some of the holes (geometrically significant) and hence
introduce an original persistence algorithm (taking advan-
tage of TB-balls).

Finally by computing the corresponding grayscale persis-
tent diagram, we predict the best threshold value hopt to ex-
tract holes (see section 5.3).

In this section, we describe in details each step of our ap-
proach. The whole code has been developed with Python
(with the SciKit-Image library) excepted thickness-breadth
measure computation (which has been developed in C++ by
Aldo Gonzalez-Lorenzo).

5.1. Preprocessing of images

As described in section 3, our work focuses on images of
pollens containing net structures and we investigate the rele-
vance of algebraic topology to assess such structures. How-
ever, such measures can only be defined on cubical com-
plexes (and hence on binary objects: images in 2D or sets
of voxels in 3D). Hence we first have to convert images into
black and white PGM images (which will be the input of
TB-measures computation). In addition, as we intend to ex-
tract cavernous structures of these pollens, we must define
a pre-processing of images that highlights such holes in the
images and removes the background.

In this context, we set up the following pre-processing
pipeline of pollen images:

Figure 7: Illustration of pre-processing steps.

Most images obtained from microscopes are very “flat”,
hence we first increase the contrast of images. Then, as we
will independently compute black and white holes, if neces-
sary, we compute the negative image for further processing.
We then extract holes boundaries using an active contour
approach (SciKit-Image library). An active contour model
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is based on a two-dimensional curve, actually a polyline
formed by a sequence of points. The curve (which is close in
our case) is placed in the area of interest in the image and an
energy is defined to simultaneously evaluate the “distance”
between the curve and areas of interest of the image, the
smoothness of the curve, it’s stretching... Several equations
describe the evolution of the curve (ie. the displacement of
its points) towards a curve of minimum energy. Once ex-
tracted, this contour is first used to clean the background and
perform a 1 pixel erosion of holes to strengthen them.

Then, on the one hand, as described in the next section, we
extract from this contour geometrical characteristics of pol-
lens (barycentre, largest and smallest size and corresponding
directions). On the other hand, the contour is used, prior to
any further topological extraction, to “close” the shape be-
fore assessing its holes.

5.2. Geometrical features extraction

As stated earlier, we use the contour extracted in the pre-
vious step to compute geometrical descriptors characteriz-
ing the boundary of pollens. More precisely, as illustrated
on Fig.8 several geometrical values play a major role for
palynologists: barycenter of pollens contour, maximum and
minimum axis of pollens and its extension along these axes.
These simple measures play a major role in pollens classifi-
cation.

Figure 8: Overview of axes find on Achyranthes aspera

Technically, we start from the contour extracted in the pre-
vious step (ie. a sequence of points forming a closed poly-
line), to compute the barycenter of the contour line. Then,
by assessing lines going through this barycenter, we extract
the maximum and minimum extension directions and sizes.

5.3. Computing holes of pollens images

5.3.1. Binarization and TB extraction

After closing the shape of the pollen (see section 5.1) we
create a set of binary images using a threshold h ranging
from 10 to 240 with a step of 5 (fig.9). More precisely, given
a threshold h and a pixel p of value val(p):

val(p)←

{
255 (white) if val(p)> h

0 (black) otherwise

For each binary image, we then use the TB-measures al-
gorithm to extract holes of each binary image together with
there thickness/breadth balls (ie. measures of holes and cen-
ter/radius of thickness/breadth balls). Fig.9 illustrates results
obtained for various thresholds.

Figure 9: Binarization of a Atriplex hortensis 4359 pollen
image with various thresholds, (from left to right : threshold
10, 100, 130, 160). TB-measures are displayed for each im-
age through red circles (breath) and blue circles (thickness).

A key issue is thus to choose the right threshold for hole
detection. Unfortunately, classical approaches based on his-
togram analysis or Otsu (local or global) thresholds, do not
give stable results. Provided the range of images of pollens
obtained by optical microscopes (colors, contrasts, sharp-
ness, focal...), our experiments proved that a correct thresh-
old does not depend on the distribution of pixel colors but on
the contrast around holes.

In order to solve this problem, we developed a notion of
TB-grayscale persistence described in the next section.

5.3.2. TB-grayscale persistence

As illustrated in Fig.9, the location of holes in binarizations
with increasing threshold is not random. On the contrary,
it follows a clear organization. By construction of our pre-
processing, each set of binary images starts with an image
with just a white disk with a black background (threshold
0). Then, as the threshold increases, new holes appear in the
white disk and holes eventually merge. Holes eventually to-
tally fill the initial white disk when the threshold reaches the
highest gray of the image.

To state it formally, given two gray-level thresholds i < j
and Ii and Ij the corresponding binary images, we easily
show that Ii ⊆ Ij . As a consequence, the sequence of binary
images forms a filtration. Hence, it is possible to compute
a grayscale persistence diagram of holes through this filtra-
tion.

However, our filtration contains a nested sequence of im-
ages (not cubical complexes). Moreover, the holes we wish
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to extract should be both large enough (geometrically) and
with a sufficient contrast with respect to the background.
Taking advantage of TB-disks previously extracted, we can
estimate a size and location for each 1-hole (respectively the
center and radius of its breadth ball). Starting from these
disks, introduce a dedicated algorithm which discards small-
est holes and computes the persistence of others. This algo-
rithm is illustrated by the pipeline of Fig.10.

We will illustrate this pipeline through the example repre-
sented Fig.11.

Let us assume that three holes appear in the red frame at
threshold i. Let us now describe how the TB-grayscale per-
sistence algorithm handles these holes. As holes appeared at
threshold i, holes are “new” and no comparison is required.
All three holes are labeled with new labels and their birth
is set to i (by default their death is set to 250 which is the
maximum threshold). Let cik be the coordinates of the center
of the kth hole breadth-ball (actually the center of the largest
disk inscribed in the hole k (red circles)) and let rik denote
the radius of this inscribed circle.

Nota: Fig.11 also exhibits blue circles which are the
"thickness"-balls of these holes (cf. section 4.2).

When moving to the next threshold (i+ 1), persistence
consists in “following holes” of the previous step to find out
whether they are still "alive" (and therefore update their la-
bels) or if they are "dead" (ie. merged with another hole) and
therefore update their death.

Let us assess one by one each hole of Fig.11. Hole hik0

corresponds to hi+1
j0

as their breadth-balls overlap (ie. the
distance between their respective centers is less than the sum
of their radius). On the contrary hik1

does not match directly
any hole of step i+ 1 by such a breadth-ball overlaps. We
thus determine its possible matching by incrementally com-
puting the connected component of its breadth-ball in the
complementary of the image (here, we find that hi+1

j1
over-

laps the connected component of hik1
). Last, hik2

directly
matches hi+1

j1
by the overlap of their breadth-balls.

In case several holes of step i (here hik1
and hik2

) match a
single hole of step i+1 (here hi+1

j1
). In this case, persistence

states that “the oldest survives whereas the newest dies” (in
our context, we rephrase this rule as follows to avoid any am-
biguity: “the oldest (or if both have the same age, the largest)
survives whereas the newest dies”.

In our case, hik1
and hik2

were born at the same time, hence
hik2

"wins" by its size. As a consequence, hik1
dies at time

i+ 1 whereas hik2
survives. Finally, if new holes were born

in time i+1, we would have added them.

Last, let us clarify the values of thresholds. Contrary to
persistent homology algorithms, we compute the persistence
of 1-holes using breadth-balls. Therefore, there is no need

to decompose the filtration into elementary “1-cell” adjunc-
tion steps and hence successive gray-levels only need to be
strictly increasing. Hence by “threshold i”, we just mean
“threshold θi” at step i (with 0 6 θ1 < · · · < θi < θi+1 <
· · ·< θN 6 255).

5.3.3. Optimal threshold prediction

The set of holes of successive binary images is now labeled
so that we can follow them throughout the 10-250 thresh-
old range. Hence our TB-grayscale persistence associates to
each hole in this filtration an interval [b,d] with its respec-
tive "birth" and "death" dates. We thus obtain a persistence
diagram in which each point represents one hole in this fil-
tration.

A point [b,d] of this persistence diagram measures the per-
sistence or “lifetime” of a hole (given by d−b). Holes of low
lifetimes (ie. points located near the diagonal of the persis-
tence diagram) actually have very low contrast. Such holes
are mostly noise.

Therefore, as illustrated in Fig.12, we first apply a filter-
ing on the persistence diagram to remove points close to the
diagonal. This filtering is represented by the orange axis.

On the contrary, most relevant holes (red circle) are points
located as far as possible from the diagonal. The optimal
threshold θopt is then computed such that the correspond-
ing binary image contains as many relevant holes as pos-
sible (which should thus be “already born” and “not yet
dead”). Classically in persistence, it is the value θ such that
the upper-left quadrant of (θ,θ) contains as many points as
possible.

6. Experiments

As described in section 3, our work focuses on pollens of the
family "Amaranthaceae". More precisely, we studied three
species in this family : Achyranthes Aspera, Sueda Mar-
itima, Sueda Monoica. For the first one, Achyranthes Aspera,
we used two images of the same pollen taken with two dif-
ferent focus (see Fig.2). We exploit only one image of both
remaining species.

6.1. Extraction of geometrical characteristics

The first part of our pipeline proved quite efficient on the
pollen images. We extracted correctly the pollen shape for
each image, which allowed us to calculate their geometrical
characteristics. However, it should be noted that depending
on whether we work with the negative image or not, geomet-
ric values vary slightly (see Fig.13).
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Figure 10: Grayscale persistence computation. At step/threshold i, the image contains ni holes hik = (cik, r
i
k) where cik and rik

respectively denote the center and radius of the breadth-ball of the kth hole.

threshold i

hi
k1 hi

k0

hi
k2

threshold i + 1

hi+1
j1

hi+1
j0

hi+1
j1

Figure 11: Illustration of TB-grayscale persistence computation: (up) threshold i, (down) threshold i+1.

Figure 13: Geometrical characteristics from the first focus
of Achyranthes Aspera. The left image is the reverse image
use for detecting ’front’ holes. The blue circle is the pollen
shape. Red line is the maximum axis. The green line is the
minimum axis.

6.2. Extraction of pollen net structure

The second part of our work is much more complicated to
evaluate. In the next section (see section 6.3), we discuss
about the solution that we used to estimate the performance

of the algorithm. But in this section, we first illustrate our
results by displaying on the input image the holes found with
the optimal threshold.

The focus used for the picture seems to have an influence
on the performance of the detection. The second focus for
the pollen Achyranthes Aspera generates lots of details in
the center of the pollens and blur the pollen’s contours (see
Fig.15). These overloads of information, disturb the detec-
tion of ’back’ holes and the result seems to be unusable.

However, results of the three others pictures are really en-
couraging. Using the inverse focus improve the detection of
the ’front’ and ’back’ holes in the center of the pollen im-
age. We can notice some noisy holes with a small radius
located on the pollen contour including the picture of the
first focus of Achyranthes Aspera as well as Suaeda Monoica
(Figs.14,17). Such noise is due to the increase of details on
pollen’s contour.
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Figure 12: TB-grayscale persistence diagram and selection of the optimal threshold.

Figure 14: Holes extracted from Achyranthes Aspera (first
focus). ’Front holes’ are red circles in the left image and
’Back Holes’ are those in the right image)

Figure 15: Holes extracted from Achyranthes Aspera (sec-
ond focus). ’Front holes’ are red circles in the left image and
’Back Holes’ are those in the right image)

Figure 16: Holes extracted from Suaeda Maritima. ’Front
holes’ are red circles in the left image and ’Back Holes’ are
those in the right image)

Figure 17: Holes extracted from Suaeda Monoica. ’Front
holes’ are red circles in the left image and ’Back Holes’ are
those in the right image)

6.3. Validation of the grayscale persistence

To estimate if the grayscale persistence gives us a relevant
threshold we face a problem which was the lack of labelled
data to compare with our results. We decided to implement
a tool that Palynologist can be used to label those dates. It’s
a small GUI code in python, which allows the user to draw
circle in the pollen image to label the different pollen holes
in the image (Fig.18). Then the radius and the center of each
circle are saved in a TXT file when the image is completely
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labelised. The type of holes ’front’ or ’back’ is also saved in
the TXT file.

Figure 18: GUI tools - ’CheckHoles’

With these two measures we estimate the performance of
holes detection of a threshold based on false positive and
false negative. To estimate the number of good detections
we compute the number of inclusions between holes from
the TXT and the TB file. Then we subtract the number of all
multiple inclusions (more than one hole from TXT or TB are
included in one hole from the other).

With this number of good inclusions : goodDetection,
the number of labelled holes in the TXT file : goodHoles
and the number of detected holes in the TB file :
detectHoles, we can calculate the performance P by com-
puting the number of false positive FP and false negative
FN .

FP = detectHoles−goodDetection

FN = goodHoles−goodDetection

P = goodDetection/(FP +FN +goodDetection)

The average performance for the eight thresholds compute
by the persistence was 55.63% (Tab.1). As we talk on the
last session (see Section 6.2), the performance of detection
of ’back’ holes for the second focus for Achyranthes Aspera
is really low with 33%. The performance for the detection
of the two types of holes for Suaeda Maritima is more than
55%. The best performance was perform with the detection
of ’back’ holes from Suaeda Monoica with 79%.

Achyranthes Aspera, first focus
DPFH 42%
DPBH 50%

Achyranthes Aspera, second focus
DPFH 57%
DPBH 33%

Suaeda Monoica
DPFH 57%
DPBH 68%

Suaeda Maritima
DPFH 59%
DPBH 79%

Table 1: Performance of the computed threshold by the
grayscale persistence. DPFH is the Detection Performance
for Front Holes. DPBH is the Detection Performance for
Back Holes.

7. Discussion

In this study, we tested if persistent homology can provide
information about the pollen net structure. The lack of data
prevents us to affirm this question. However, the present re-
sults are promising. Persistence homology used to compute
TB-measures seem to work on both types of pollens holes
(front and back).

Results from the section 6.3 show clearly the limits and
possibilities of our approach. Fig.19 shows the labelled holes
of Sueda Maritima compare to holes detected by the thresh-
old of the grayscale persistence. There are some labelled
holes invisible to the eye, especially on the pollen contour.
These holes are really difficult to identify in the image. Pa-
lynologist labeled this area because they pre-identified the
pollen image and then deduced an analysis in the image. It
seems impossible to detect these holes with any image anal-
ysis approach.

Nevertheless, we can identify an area where the algorithm
has a really good accuracy of holes detection. This area is the
center of the pollen (Fig.19). Here the persistence homology
manages to identify pollens holes and geometrical character-
istics of theses holes (radius, center) seems to fit well with
labelled holes. We can notice that the focus used for the input
image seems to impact the performance of holes detection.
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Figure 19: Images of the pollen Sueda Mar-
itima.Visualisation of labelled pollen holes, green circle,
from the GUI ’checkHoles’ and detected pollen holes ,
red circle, from the threshold of the grayscale persistence.
The orange dotted circle is the area where the persistence
homology has good results. ’Front’ holes are located on the
left image and ’back’ holes on the right image.

8. Conclusion

Persistence homology appears as a good solution to the ex-
traction of pollen net structure in the image. Our approach
gives good results for holes which can be detected by image
analysis computation. These holes are usually located in the
central area of the pollen. In this area the method can detect
two types of holes (front and back) and give some geomet-
rical characteristics of the pollen (barycentre, maximum and
minimum extension).
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