
PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point
Clouds

CHEMS-EDDINE HIMEUR, THIBAULT LEJEMBLE, THOMAS PELLEGRINI, MATHIAS PAULIN,

LOIC BARTHE, and NICOLAS MELLADO, CNRS, IRIT, Université de Toulouse, France

user inputs classification

Training: ABC

Training: Default

Non-edge

Sharp Smooth

learning

(a) (b) (c)

Fig. 1. Three examples of edge detection in point clouds by our PCEDNet neural network. It handles both: (a) the imperfect edges of
large scale scans (here 12 million vertices) subject to irregular sampling and noise while detecting both sharp (in red) and smoother
(in yellow) edges in few minutes (here less than 6) - and - (b) accurate CAD data on which it can focus on sharp edges if desired, in
a few seconds for this model. (c) Our network can also be trained in a few seconds to detect edges following the edge definition
provided by a user in an interactive model annotation. We show two annotations corresponding to different user expectations. Most
of the processing is precomputed and at runtime edges of this model are classified in less than a second.

In recent years, Convolutional Neural Networks (CNN) have proven to be efficient analysis tools for processing point clouds, e.g., for
reconstruction, segmentation and classification. In this paper, we focus on the classification of edges in point clouds, where both edges
and their surrounding are described. We propose a new parameterization adding to each point a set of differential information on its
surrounding shape reconstructed at different scales. These parameters, stored in a Scale-Space Matrix (SSM), provide a well suited
information from which an adequate neural network can learn the description of edges and use it to efficiently detect them in acquired
point clouds. After successfully applying a multi-scale CNN on SSMs for the efficient classification of edges and their neighborhood,
we propose a new neural network architecture outperforming the CNN in learning time, processing time and classification capabilities.
Our architecture is compact, requires small learning sets, is very fast to train and classifies millions of points in seconds.

CCS Concepts: • Computing methodologies→ Point-based models; Shape Analysis; Neural networks.

Additional Key Words and Phrases: Point clouds, neural networks, edge detection, datasets

Authors’ address: Chems-Eddine Himeur, chems-eddine.himeur@irit.fr; Thibault Lejemble, thibault.lejemble@irit.fr; Thomas Pellegrini, thomas.
pellegrini@irit.fr; Mathias Paulin, mathias.paulin@irit.fr; Loic Barthe, loic.barthe@irit.fr; Nicolas Mellado, nicolas.mellado@irit.fr, CNRS, IRIT, Université
de Toulouse, Toulouse, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

ar
X

iv
:2

01
1.

01
63

0v
1

 [
cs

.G
R

]
 3

 N
ov

 2
02

0

2 Himeur, et al.

ACM Reference Format:
Chems-Eddine Himeur, Thibault Lejemble, Thomas Pellegrini, Mathias Paulin, Loic Barthe, and Nicolas Mellado. 2020. PCEDNet : A
Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds. 1, 1 (November 2020), 29 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Nowadays, acquired point clouds are a very common and widespread representation. The large range of acquisition
devices and Computer Vision techniques massively generate clouds with tens or hundreds of millions of points. The
shapes sampled by these large unstructured data are arbitrarily complex, and their processing remains extremely
tedious. Edges are fundamental features for processing point clouds and their automatic detection is thus useful in a
wide range of applications in the fields of computer vision (e.g. feature extraction), computer graphics (e.g. contour line
reconstruction) and others. Despite regular advances over the years, it remains however an open, very challenging
problem.

In general, edges are defined strictly as sharp edges, e.g. for manufactured objects [Koch et al. 2019], or as feature
lines in an object. When asked to draw feature lines, users tend to follow more complex rules that may vary from people
to people [Cole et al. 2008]. This leads to a lack of clear theoretical definition of an edge, especially on 3D surfaces
acquired from models including features of different scales and more or less damaged/clean edges (e.g. stone or plastered
buildings, progressively smoothed edges, polished mechanical parts, etc). In addition, an edge can be considered as sharp
or smooth depending on the observation scale. This generates contextualized and potentially ambiguous interpretation
of what edges are. For instance, different persons produced different annotations on the models provided for the recent
feature curve detection contest [Thompson et al. 2019]. These models include a large variety of different edges, from
sharp to smooth and rounded. This underlines that the frontier between an edge and a smooth surface (i.e. a feature
boundary and a feature continuity) remains subjective, especially in the case of real world models.

Machine Learning (ML) approaches have gain a lot of interest for their ability to efficiently reproduce theoretically
“fuzzy” or complicated classifications for which we are able to provide a sufficiently large set of annotated data. At first
glance, they thus seem particularly attractive to create efficient edge detectors. However, in the context of point cloud
processing, ML remains very challenging to use as there is neither natural ordering [Zaheer et al. 2017] nor intrinsic
parameterization of the input data. In the past years, patches of points have been used by several approaches to apply
Convolution Neural Networks (CNN) for classification [Qi et al. 2016a] and local shape property estimation [Guerrero
et al. 2018].

For edge detection, geometric approaches avoid using patches by considering geometric descriptors parameterizing
each individual point [Demarsin et al. 2007; Weinmann et al. 2013]. Following this idea, Hackel et al. [2016] propose to
train a random forest classifier taking as input geometric quantities obtained at multiple scales by linear regression in
order to classify points belonging to edges.

In this paper, we introduce both a new way to individually parameterize points, together with a dedicated edge
detection neural network classifier called Point Cloud Edge Detection Network (PCEDNet). Points are parameterized with
a so-called Scale-Space Matrix (SSM) (Section 3.2) encoding extrinsic geometric properties of a locally reconstructed
surface surrounding each point of the input point cloud at multiple scales. The use of this multi-scale parameterization
allows us to propose a compact architecture (Section 3.3) based on a simple neural network enabling both its training in
seconds or few minutes on small data sets, and the processing of 500 thousands of points per second on average with
our current CPU implementation (Table 9). This fast training and the limited requirement on annotated data allow to
Manuscript submitted to ACM

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 3

easily specialize our network to specific edge definitions, as illustrated in Figures 1-a and 1-b. It is fast enough to allow
a user to interactively label small sub-parts of a point cloud and let our network annotate millions of points in seconds
(Figure 1-c, Section 5.5).

The choice of our SSM values is validated by an ablation study (Section 5.1), and we evaluate the effectiveness of
our network by comparing its speed and accuracy with existing geometric edge detection approaches, point-based
processing networks, and two baselines: a Convolutional Neural Network (CNN) and a Fully Connected neural network
(FC) (Section 3.4). Our results (Section 5) demonstrate the superiority of our PCEDNet over previous works, and illustrate
its efficiency on a large variety of data, from CAD models to real world examples with tens of million of points
(Figures 1-a and 20).

Current networks processing point clouds rely on very deep architectures in an end-to-end strategy. While the way
our point parameterization is computed is not novel in geometry processing, the use of these parameters structured
in our SSM as input of a network is new. Our proposition illustrates how a simple network exploiting these multi-
scale geometric surface descriptors overpasses current approaches. We believe that its superiority in training and
evaluation speed, scalability and resource requirements (computation and memory) makes it an example for the creation
of lightweight point could processing solutions opening new perspectives regarding the system interactivity and
adaptation to user’s wishes. This is also a step forward to reach real-time point cloud processing with limited resources,
which is becoming a very important challenge.

2 RELATEDWORK

In this section, we first present the way unorganized point clouds are parameterized before being processed for geometric
learning (Section 2.1). We introduce the different existing architectures for point-based machine learning and we discuss
methods for edge detection from point clouds (Section 2.2). We then review geometric approaches (Section 2.3) dedicated
to this topic.

2.1 Point cloud parameterization

Point clouds are most of the time defined as unordered and unstructured set of points sampling an unknown surface.
When using neural networks on point clouds, a first challenge is to define a regular structure of the cloud that fits a
network architecture, i.e. to parameterize the point cloud according to the network architecture. Several approaches
have been proposed to tackle this challenge. A first class of approaches parameterizes unstructured point clouds in
regular grids, e.g. using series of images taken from different viewpoints [Boulch et al. 2018, 2017; Kalogerakis et al.
2016; Su et al. 2015], or using voxel grids [Maturana and Scherer 2015; Qi et al. 2017a, 2016b; Wu et al. 2015; Zhou and
Tuzel 2017]. The main limitation of these approaches is the cells memory requirement that limits their scalability to
very large models especially when detecting thin structures and details, e.g. edges.

A second class of approaches processes each point and its neighborhood, so that the point coordinates are directly
processed by the network. PointNet and its variants [Guerrero et al. 2018; Qi et al. 2016a, 2017b] use multi-layer
perceptron (MLP) to consecutively sample and group point coordinates and build geometric features around a point.
Several approaches have been proposed to extend convolution to 3D point clouds, using local spectral convolution [Wang
et al. 2018], parameterized convolutional filters [Xu et al. 2018], transformed points [Li et al. 2018], sparse lattices [Su
et al. 2018], adaptive kernels [Boulch 2019] and kernel point convolution [Thomas et al. 2019].

The strong benefit of point-based convolutions is to allow the design of networks whose first layers learn features at
multiple scales directly from the point locations. On the other hand, the characterization of geometric structures relies

Manuscript submitted to ACM

4 Himeur, et al.

on the way convolution layers capture those features, only based on the local spatial organization of points. On real
data, point sets also include sampling variation, noise, outliers and missing data that also have to be learned.

2.2 Network architectures

Most of the point-based geometry analysis neural networks are tailored for point cloud segmentation [Dai et al. 2017]
and classification [Hackel et al. 2017; Zhirong Wu et al. 2015]. They follow the rational introduced by PointNet, where
point coordinates are abstracted by successive layers, then reduced using max pooling for feature extraction and finally
processed with MLP for the final decision. Such architectures aim at abstracting the input point cloud and estimating
high level or semantic properties.

Some approaches also aim at processing point clouds according to their local geometric properties, e.g. normal
estimation [Boulch and Marlet 2016]. PCPNet [Guerrero et al. 2018] learns local shape properties (e.g. normal vectors)
directly from raw point clouds. Interestingly, this work suggests a multi-scale architecture where several networks
process the surrounding of the analyzed point at increasing neighborhood size (one network per size). The features
learned by the different networks are stacked to form a feature vector, and processed by a fully connected network
to produce the final decision. Recently, the deep Learning Point Network architecture [Lê et al. 2020] improves the
implementation of convolution-based point cloud processing networks such as PointNet, DGCNN [Wang et al. 2019]
and SpiderNet [Zhao et al. 2020].

Overall, all these networks have been designed to extract semantic information from point clouds, which justify
their both deep and large architectures. In our more geometric and specialized context, these architectures become
unnecessarily complex while requiring long training and processing times.

2.3 Edge detection

Detecting edges in unstructured point clouds is usually cast as a sharp feature, a feature contour or a curve detection
problem. It is often the first step of constrained surface reconstruction algorithms and over the years, many approaches
have been proposed in this context. We refer the interested reader to the survey by Berger et al. [2017]. A standard
approach is to compute at each point a geometric descriptor using the eigenstructure of the covariance matrix [Gumhold
et al. 2001]. It can be a ratio between the eigenvalues, taking into account their evaluation at different scales [Pauly et al.
2003] or not [Xia and Wang 2017], or directly a curvature estimation [Lin et al. 2015; Nguyen et al. 2018]. The ratio
between eigenvalues is considered as a more reliable parameter and it is, for instance, used in the CGA Library [CGAL
[n.d.]] with a Delaunay-based feature estimation [Mérigot et al. 2011]. While well established, all these approaches
suffer from a sensibility to noise and they perform at a given scale with a strong dependence to a decision threshold.
The methods introduced by Pauly et al. [2003] and Bazazian et al. [2015] consider curvature ratio at different scales
that reduces the dependence to the scale of analysis and the sensibility to noise, but they remain subject to a decision
threshold.

Another family of methods relies on Moving Least Squares surface reconstruction [Demarsin et al. 2007; Ni et al.
2016; Weber et al. 2012]. Using this reconstruction, edge detection can be performed on a Gaussian map clustering
computed in a local neighborhood [Weber et al. 2010]. Adaptive reconstruction kernels [Fleishman et al. 2005] can
also be combined with polynomial fit [Daniels II et al. 2008]. Other approaches rely either on subspace detection and
feature intersection computation [Fernandes and Oliveira 2012], on the mean-shift algorithm to select the farthest
points from the centroid of their neighborhood [Ahmed et al. 2018], on the average of neighbors altitude over a local
tangent plane [Li and Hashimoto 2017], or on the intersection of planes detected using RANSAC [Mitropoulou and
Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 5

Fig. 2. Synthetic point cloud sampling a cube with sharp edges (red lines). Due to the sparse sampling and noise, only a few points lie
on edges (red points). Detecting the edge surrounding (yellow points) improves the robustness to noise and sampling variation.

Georgopoulos 2019]. In other contexts, edges are defined as a specific type of lines on the surface. Lin et al. [2015]
use RANSAC to spatially regularize the response of a sharp feature detector. Recently, Hackel et al. [2016] proposed a
data-driven method where the points are classified and then structured using a graph-based approach. Extending local
sharp feature detectors by a global analysis improves the robustness of the detection but limits the scalability, a critical
aspect when processing large sets of points clouds defined by tens of million of points or more.

Finally, with an architecture based on PCPNet, ECNet [Yu et al. 2018] is a network consolidating edges after up-
sampling the point cloud and detecting its edges. ECNet is thus a very deep network requiring important resources for
training and processing points at inference time, while being limited in scalability by its up-sampling.

In this work, as suggested by Hackel et al. [2016], we propose to take advantage of the discrimination offered
by geometric descriptors in a machine learning approach. We increase the robustness to noise and the adaptation
to the different feature size/shape by the use of stable multi-scale descriptors including derivatives over scales. We
then use these parameters together with a specifically designed neural network. By relying on this set of descriptive
parameters, our network avoids the deep design of existing approaches by only requiring a very compact architecture
that recursively combines the features learned at different analysis scales.

3 METHOD

3.1 Problem statement

Given a surface sampled by a point cloud, a sharp edge is commonly defined as a tangential discontinuity. Weber et al.
[2010] define edges as sharp features (crests and valleys) between two meeting planes, as well as corners at the point of
intersection between three or more planes. Hackel et al. [2016] call them "wire-frame contours", and define edges as
linear features along which the orientation (normals) of the underlying surface exhibits an unusual discontinuity.

There are at least two main reasons why these definitions are restrictive and not really practical for the analysis of
point clouds:

(1) Sparsity: Points of acquired point clouds are unequally distributed over the object surfaces. Sharp edges are by
nature very sparse, and it is very unlikely that the points of a point cloud actually sample the exact edge of the
underlying surface as illustrated by the red points in Figure 2.

(2) Rounding: Acquired point clouds are composed by points sampling real-world objects, on which edges are
always more or less rounded/damaged (Figure 20). For instance, two facades of a building might be locally
connected by a continuous curved surface considered as an edge at the scale of the building, which may be
unlikely to be detected at lower scales such as the one of the bricks.

Manuscript submitted to ACM

6 Himeur, et al.

In order to handle these situations, we propose to classify points as sharp-edge when they lie on a sharp edge,
and as smooth-edge when they are (1) near a sharp edge or (2) on a rounded edge. Other points are then labeled as
non-edge. Depending on the application context and the artifacts found in the data, one might consider either one
or the two edge classes in the results (we experimentally validate this proposition of two edge classes in Section 5.1).
Considering that we do not have a universal and practical definition of an edge, we propose to learn the point-based
classification of this feature from examples. In order to be robust to acquisition artifacts, sampling issues and edge
roundness, we first reconstruct the surface described by the input points using a robust reconstruction algorithm, at
multiple scales. We then compute geometric descriptors of the reconstructed surfaces, which are parameters to be
processed by a machine learning algorithm (see Section 3.2). We show how this parameterization can be used with a
common CNN and a fully connected neural network (Section 3.4), and we propose a dedicated architecture (Section 3.3)
that outperforms these networks as well as previous edge classification approaches.

3.2 Scale-Space Matrix

Our approach is inspired by the Growing Least Squares (GLS) approach [Mellado et al. 2012], where the geometry
surrounding a point is described by the differential properties of the surfaces reconstructed from neighborhoods of
increasing size. We first present the basics of GLS, and then introduce the Scale-Space Matrix (SSM), which wraps in a
regular structure the differential properties of the surfaces reconstructed at different scales.

The GLS extends the concept of Scale-Space analysis [Lindeberg 1993; Witkin 1987] to point-based shape analysis.
The key idea is to detect pertinent geometric structures and scales as stabilities in scale-space. Stabilities are found when
the magnitude of the derivatives of the surface is minimized when the scale varies. Due to its multi-scale nature, this
approach disambiguates between noise and features, and detects geometric features defined at arbitrary scales. As such,
points on a rounded and a sharp edge have discriminant descriptors and can be disambiguated during classification.

We denote S𝑡 the continuous surface reconstructed at scale 𝑡 , defined as the 0-isosurface of a scalar field 𝑆𝑡 (x) :
R3 → R. We use the Algebraic Point Set Surfaces (APSS) [Guennebaud and Gross 2007] to reconstruct continuous
surfaces from raw point clouds. This approach has been proven to be fast and stable at large scales [Guennebaud et al.
2008]. As many other previous work, the scale is controlled by varying the size of a neighborhood ball centered around
the evaluation point.

In its original formulation, the pertinent scale extraction introduced by Mellado et al. [2012] combines several
descriptors measuring the variation of local relief 𝛿𝜏 (x,𝑡)

𝛿𝑡
, normal orientation 𝛿𝜂 (x,𝑡)

𝛿𝑡
and mean curvature 𝛿𝜅 (x,𝑡)

𝛿𝑡
,

where 𝜏 (x, 𝑡) : R4 → R, 𝜂 (x, 𝑡) : R4 → R3 and 𝜅 (x, 𝑡) : R4 → R are scale-invariant properties of the surfaces S𝑡 (x)
(mathematical formulations are presented in Appendix A). They also use 𝜙 (S𝑡 (x)), the residuals of the fitting process,
as confidence value.

In this work we propose to extend this idea further by measuring the surface variation in scale and space around
each sample p𝑖 of the input point cloud. We do not seek at defining an hand-crafted descriptor, but rather providing
differential properties of the surface that are discriminent for edge detection. According to the GLS formalism, the
parameters 𝜏 , 𝜂 and 𝜅 are differentiable both in scale and space, which leads to a Jacobian matrix of 5 × 4 entries (see
the description in Appendix A). By keeping only the quantities that are invariant by rigid transformations and not
linearly dependent, we obtain the following feature vector 𝑋 𝑡

𝑖
:

𝑋 𝑡
𝑖 =

[
𝜏𝑡
𝑖

𝜅𝑡
𝑖

𝑘1𝑡
𝑖

𝛿𝜏𝑡
𝑖

𝛿𝑡

𝛿𝜅𝑡
𝑖

𝛿𝑡
𝜙 (𝑆𝑡p𝑖)

]
(1)

Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 7

where 𝜏𝑡
𝑖
= 𝜏 (p𝑖 , 𝑡) and 𝜅𝑡𝑖 = 𝜅 (p𝑖 , 𝑡). 𝑘1𝑡𝑖 measures the magnitude of the first principal curvature of the surface, and is

computed from 𝛿𝜂𝑡
𝑖

𝛿x . According to our experiments, high values of 𝜏 , which measure the local relief, helps to disambiguate

between rounded and sharp edges. The scale derivatives 𝛿𝜏𝑡
𝑖

𝛿𝑡
and 𝛿𝜅𝑡

𝑖

𝛿𝑡
denote the stability of the reconstruction scale 𝑠 𝑗 .

The Scale-Space Matrix (SSM) defines a structured paramaterization of the surfaces S𝑡 described by the feature
vectors 𝑋 𝑡

𝑖
computed at 𝑁 scales on each of the𝑀 points of the cloud. It is thus defined as follows:

𝑆𝑆𝑀 =



𝑋 1
1 𝑋 1

2 𝑋 1
3 . . . 𝑋 1

𝑀

𝑋 2
1 𝑋 2

2 𝑋 2
3 . . . 𝑋 2

𝑀
.
.
.

.

.

.
.
.
.

. . .
.
.
.

𝑋𝑁
1 𝑋𝑁

2 𝑋𝑁
3 . . . 𝑋𝑁

𝑀
.


. (2)

The minimum scale 𝑠min is defined by the mean density of the point cloud, and the maximum scale 𝑠max is 10% of the
radius of the point cloud axis aligned bounding box (the effect of the variation of these values is presented in Section 5.6).
According to previous work [Bronstein and Kokkinos 2010; Mellado et al. 2015], we use a logarithmic scale sampling to
obtain scale-invariant feature vectors, such that

𝑠𝑖 =

(
𝑠max
𝑠min

) 𝑖−1
𝑁−1

∗ 𝑠min . (3)

For all our experiments we use 16 scales distributed according to Equation 3. Even though we carefully selected the set
of descriptors defining our SSM for their geometric meaning with respect to edge detection, we validate the optimality
of this choice when parameterizing our neural network by an ablation study presented in Section 5.1.

3.3 Our network: PCEDNet

The architecture of our Point Cloud Edge Detection Network, denoted PCEDNet, is depicted in Figure 3. The input data
is provided to the network as sixteen 6-dimensional vectors 𝑋 𝑡

𝑖
per point, each vector corresponding to a scale. The

sixteen scale vectors are concatenated by groups of two in order to form eight 12-dimensional vectors. More precisely,
the first scale is grouped with the second one, the third one with the fourth one, and so on. The idea is to halve the
number of scales iteratively until obtaining a single 12-dimensional vector as a final feature representation.

All the layers are fully-connected layers, also called dense layers (linear layer with biases), followed by a sigmoid
activation function. For the first layer, each vector of size 12 is given to a dense layer comprised of 6 neurons. There
are eight input vectors and each vector is fed to its own 6-neurons layer. The weights are not shared between these
small layers, allowing to process the scales differently, as would do a convolution layer, but here, we combine scales by
groups of two. The subsequent three layers perform similarly, but with 48, 24, 12 neurons, respectively.

The final 12-dimensional feature vector is given to a multi-layer perceptron (MLP) responsible for the classification.
This MLP is composed of two 16-neuron dense+sigmoid layers followed by the output layer with 3 neurons and a
softmax activation function. The total number of weights is about 2.1k, which makes our architecture very compact.

The goal of grouping different scales together is to observe the input shape at different scales in a simultaneous and
more intricate way than without grouping them. We expect that this eases the simultaneous detection of higher-scale
and sharp geometric properties of the input point clouds. Another reason is that such a representation helps the model
to cope with noise in the point clouds.

Manuscript submitted to ACM

8 Himeur, et al.

6

6

6

6

6

6

6

6

6

66

66

6 6

6

6

6

6

6

6

6

66

66

66

66

6×12

12
×1

6×
1

6×
1

W In B Out

1616 3

6×12

12
×1

6×
1

6×
1

W In B Out

16×12

12
×1

16
×1

16
×1

W In B Out

16×16

16
×1

16
×1

16
×1

W In B Out

3×16

16
×1

3×
1

3×
1

W In B Out

Fig. 3. Our PCEDNet architecture

The "tree structure" merging scales two by two iteratively can be seen as a variant of a grouped convolution operation.
It preserves the high computing speed of keeping the scales separate while also mixing the scales layer after layer. It is
expected to reduce the chance of being biased by a specific scale and the sensitivity to scale-dependent noise.

Fig. 4. Architecture of the FC baseline

3.4 Baseline models

The use of this new architecture is justified only if it performs better than more common choice of networks. We thus
incorporate as baselines two networks in our evaluation:

• FC: A Fully Connected variant of PCEDNet where all scales are connected (Figure 4).
Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 9

Fig. 5. Architecture of the CNN baseline

• CNN: A 1-d Convolutional Neural Network with a number of layers similar to our PCEDNet architecture (Figure 5).

FC. This architecture presented in Figure 4 allows us to measure the impact of the pairwise scale connection
introduced in PCEDNet. FC and PCEDNet architectures differ by the four first layers: instead of consecutively combining
scales by pairs, the FC baseline combines all the scales in unique dense layers while keeping the same reduction rate,
i.e. 16-8-4-2 scales. We use the same number of neurons than PCEDNet to get comparable architectures. In total, the
FC baseline is comprised of about 6663 weights (three times more than PCEDNet). The input data is provided to the
network by concatenating the sixteen 6-dimensional vectors used by PCEDNet in a single 96-dimensional vector.

CNN. We chose a standard convolutional neural network architecture presented in Figure 5, composed of two blocks:
a first block for representation learning with two 1D convolution layers, each followed by a ReLU activation function,
and a second block dedicated to classification with three fully-connected layers and one 3D output layer. We tried a
large number of variants and the one we present is the best we obtained by trials and errors. The two convolution
layers are composed of 15 filters, with a kernel size of 6 and 5, respectively. Zero padding of size 2 was used to get
outputs of shape 15 × 5. The three dense layers are composed of 75, 15 and 15 neurons, respectively, followed by the
output layer with 3 neurons. A sigmoid activation function is used after all the dense layers, except the output layer that
uses a softmax non-linearity function. In total, CNN is composed of about 8.7k weights. The input data is also provided
to the network as sixteen 6-dimensional vectors. Using the different scales as channels enables a potentially larger
expressivity power to the model since each convolution filter uses different weights to combine the scales.

4 EXPERIMENTAL SETUP

4.1 Point cloud dataset

We measure the efficiency and adaptability of our network on three different datasets with ground truth for learning
and evaluation: edges on point clouds with acquisition artifacts (Default), sharp edges on CAD models (ABC) and
annotated curves on challenging shapes (SHREC). Each dataset is split in three sets: training set (denoted T, used for
training), validation set (denoted V, used for learning to monitor accuracy) and evaluation set (denoted E). Visual
evaluations are also conducted on a set of acquired models. Point clouds with classification results are shown in the
website accompanying the submission.

In addition to annotated learning sets, we also show in Section 5.5 how PCEDNet can learn from small set of data
annotated interactively by a user and classify point clouds without requiring additional predefined training data.

Default dataset. We design this dataset to emulate geometric structures regularly found in acquired point clouds.
It is as small as possible, in order to demonstrate that few annotated data training our network in a short time (see

Manuscript submitted to ACM

10 Himeur, et al.

timings in Table 2) are enough for an effective detection. The Default dataset is composed of synthetic data containing
edges of different shapes illustrated in Figure 6. We also included displacement noise (Figure 6-right column), with
several objects characterized by different densities and shapes. We defined the validation set by selecting a random
subset within the training set with an equal number of points across the three classes (1k per class 3k in total). We also
created an evaluation set with specific features to better evaluate the networks against noise and sharp angles. These
point clouds, not used for training, are taken from the testing set introduced by Bazazian et al. [2015] to evaluate the
algorithm Covariance Analysis (denoted CA in the following). The noise used at the training and evaluation stages has
been added on the Cube, Cone, Fandisk and 2-cubes models by applying a random motion on the points following a
Gaussian distribution with standard deviation denoted 𝜎 . Table 1 presents quantitative details (including the values
used for 𝜎), and the point clouds are shown in Figures 6, 7 and in the joined website.

ABC dataset. We use the ABC dataset [Koch et al. 2019] to evaluate the performance of our network on the detection of
sharp edges in CAD models. We use the chunk 000, which contains 7167 models represented as OBJ files. We generate

Fig. 6. Training set of the dataset Default, with sharp edges points in red, and smooth edges points in yellow.

Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 11

Fig. 7. Evaluation set of the dataset Default. Left: 2-cubes, with increasing Gaussian noise (𝜎 ranging between 0 and 0.14 units,
cube edge length 1). Right: Angle (90 degrees).

Dataset Model Usage #k
points

% points/class Noise
(𝜎)Edge S-Edge Other

Default

Cube T, V 1.5 12.2 21.8 65.9 0-0.1
Icosahedron T, V 0.6 34.6 46.7 18.6 -

Cone T, V 7.7 6.1 11.7 82.2 0-0.1
Dodecahedron T, V 12 3.5 7.7 88.7 -

Fandisk T, V 106.5 5.5 5 89.4 0-0.1
4-cubes T,V 43.9 6.8 6.6 86.5 -

2-cubes E 7.2 6 17.3 76.6
0 - 0.01

0.02 - 0.03
0.12 - 0.14

Angle E 6 0.6 1.6 97.8 -
T 287.9 9 11 80 -

Default (total) V 3 33.3 33.3 33.3 -
E 55 4.9 14.54 80.56 -
T 89.4 13.98 - 86.02 -

SHREC V 94.4 8.68 - 91.32 -
E 654.7 10.57 - 89.43 -
T 3212.4 4.66 - 95.34 -

ABC V 690 5.79 - 94.21 -
E 312314 5.52 - 94.48 -

Table 1. Statistics of the datasets used for training (T), validation (V) and evaluation (E). The Edge column gives the percentage of
points of the class sharp-edge, the S-Edge, the one of the class smooth-edge and Other is for the non-edge class.

the point clouds by exporting the vertices and the normal vectors of the meshes. The ground truth classification is
produced using the vertices associated to a sharp feature in the feature files. A notable difference with the Default
dataset is that no ground truth information is provided for the smooth-edge label. Only sharp edges are considered and
other smoother features are thus labeled as non-edge. We define the training and evaluation sets by randomly selecting
200 and 50 models respectively (see the model list in the joined website).

SHREC dataset. We use the dataset produced for feature curve extraction by Thompson et al. [2019] in order to
evaluate the performance of our network on challenging data annotated by humans. As for ABC, we consider the vertices
and normal vectors of the given meshes, and mark the annotated vertices as edge vertices. Similarly, we define the
training and evaluation sets by randomly selecting models, e.g., (M5, M6 and M14) and (M2, M11) respectively. This

Manuscript submitted to ACM

12 Himeur, et al.

procedure is not ideal as these models exhibit very heterogeneous edge shapes, but we found it fairer than randomly
sampling the point clouds.

Acquired point clouds. We also perform visual evaluations on 9 acquired point clouds whose number of vertices are
reported in Table 9. Loudun 1 and Loudun 35 are down-sampled versions (of respectively 1 and 35 millions vertices) of
a photogrammetric acquisition of the Square Tower of Loudun (France). We used Euler, Empire and Lans as provided
by Monszpart et al. [2015], Pisa Cathedral as provided by Mellado et al. [2015], Munich as provided by Hackel et al.
[2016], and we downloaded Church and Train Station from Sketchfab1.

Normal estimation. The normals used for the GLS computation are either directly those estimated with the acquisition
technique (e.g. photogrammetry, laser scanner), which are actually provided for most current acquisition devices, or
those computed automatically from the point samples (we used Meshlab [Cignoni et al. 2008] to estimate normals
on Default dataset and on Euler, Lans, Church and Train Station). We did not encounter any difficulty related
to normal estimation. Eventually, oriented normals may be avoided and replaced by unoriented normals [Chen et al.
2013a], which could be easily estimated using local fitting.

4.2 Networks training

Implementation details. We implemented PCEDNet in C++ and ran our experiments on a 40-cores Intel Xeon-E5-
2640v4 2.40GHz, with 128GB RAM. We use the Ponca library [Mellado et al. 2020] for surface fitting and derivative
computation. The network modeling and evaluation for PCEDNet and FC is implemented in our own prototype using
Eigen [Guennebaud et al. 2010] for linear algebra. The baseline CNN is implemented, trained and evaluated using Pytorch.

Categorical cross-entropy is used as objective function for both the baseline architectures and PCEDNet. On each
dataset, CNN, FC and PCEDNet are trained for 200, 200 and 40 epochs respectively, all reaching 98% accuracy on the
validation sets. Weights are initialized randomly using the Glorot and Bengio [2010] method. For the three architectures,
learning rate is set to 0.01, momentum to 0.9, with batch size of 100 points.

Training. As illustrated in Table 1, the three training sets contain mostly non-edge surfaces. The small number of
sharp and smooth edge samples (4-14% of the points) implies that we are in presence of a highly unbalanced training
set biased towards the non-edge class. We handle this issue by generating balanced batches of points during training.
We recorded training curves for PCEDNet on dataset Default (see Figure 8 and Table 5). Training usually takes a couple
of minutes for PCEDNet, a dozen for the baseline FC, and more than one hour for CNN.

5 RESULTS

In this Section, we first validate our choice of input parameters with an ablation study (Section 5.1). We then compare
in Section 5.3 our network with our baseline (i.e. CNN and FC), with ECNet [Yu et al. 2018] and PCPNet [Guerrero et al.
2018] and two geometric feature detection methods, i.e. the covariance analysis method proposed by Bazazian et al.
[2015] (CA) and the Feature Edge Estimation (FEE) implemented in the CGAL Library [CGAL [n.d.]; Mérigot et al. 2011].
For clarity, we denote A(D) the approach A trained on dataset D, e.g., PCEDNet trained on Default is denoted PCEDNet

(Default). All of the Figures of the next sections are available in full resolution on the joined website homepage, with
left/right interactive comparisons between the methods. Results of the quantitative experiments on each dataset are

1Church: https://sketchfab.com/3d-models/christ-church-and-dublin-city-council-b5f6bcce8ebc44a3b4bbb6b0fef067b3. Train Station: https://sketchfab.
com/3d-models/station-rer-6c636ca4793345e8ae12beb97b7d6359

Manuscript submitted to ACM

https://sketchfab.com/3d-models/christ-church-and-dublin-city-council-b5f6bcce8ebc44a3b4bbb6b0fef067b3
 https://sketchfab.com/3d-models/station-rer-6c636ca4793345e8ae12beb97b7d6359
 https://sketchfab.com/3d-models/station-rer-6c636ca4793345e8ae12beb97b7d6359

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 13

0 10 20 30 40

40

60

80

100
Ac

cu
ra
cy

%

Epochs

T

V

0 10 20 30 40

40

60

80

100

Ac
cu
ra
cy

%

Epochs

T

V

0 10 20 30 40

0

0.3

0.6

0.9

Lo
ss

Epochs

T

V

0 10 20 30 40

0

6

12

18

Lo
ss

Epochs

T

V

Le
ar
ni
ng

Overfitting

Fig. 8. PCEDNet: learning curves measured on Training (T) and Validation (V) sets on the (left) Default and (right) ABC. For the latter,
learning stops automatically at epoch 10, when loss and accuracy stop to be improved.

Method GLS Training Total
PCEDNet (Default) 19.32 s 2:52 m 3:11 m
PCEDNet-2C (ABC) 2:11 m 20:00 m 22:11 m
PCEDNet-2C (SHREC) 4 s 28.09 s 32.09 s
FC (Default) 19.32 s 13:58 m 14:17 m
FC-2C (ABC) 2:11 m 2:01:05 h 2:03:16 h
FC-2C (SHREC) 4 s 10:03 m 10:07 m
CNN (Default) 19.32 s 1:19:08 h 1:19:27 h
CNN-2C (ABC) 2:11 m 9:00:00 h 9:02:11 h
CNN-2C (SHREC) 4 s 26:01 m 26:05 m

Table 2. Training times of our networks on the different datasets.

documented in dedicated webpages presenting interactive distribution plots, histograms, tables, and a 3D point cloud
viewer.

Comparison metrics. We compare positive and negative matches of the classifications w.r.t. ground truth by measuring
True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN). To do so, we consider the following
metrics: Precision, Recall, F1-Score, Matthews Correlation Coefficient (MCC), and Accuracy, whose formulations are
given in Appendix B. Note that F1 ignores the True Negatives and thus is misleading for unbalanced classes, which
is our case in general, i.e. the number of TP edge points is in general very small in comparison to the TN non-edge
points. It is however reported for comparison as F1 is commonly used in similar contexts. In our case, MCC is a more
representative score for evaluation.

Manuscript submitted to ACM

14 Himeur, et al.

2-cubes (𝜎)
Angle0 0.01 0.02 0.03 0.12 0.14

All GLS P 0.529 0.305 0.348 0.413 0.310 0.340 0.327
derivatives R 0.415 0.424 0.454 0.481 0.427 0.45 0.5

(28 parameters) F1 0.465 0.355 0.394 0.445 0.360 0.387 0.396
MCC 0.435 0.310 0.353 0.407 0.315 0.345 0.400

Invariant to rigid P 0.983 0.839 0.866 0.882 0.845 0.853 0.871
transformations R 0.823 0.904 0.921 0.912 0.904 0.919 0.984
(7 parameters) F1 0.897 0.871 0.893 0.897 0.874 0.885 0.925

MCC 0.870 0.828 0.858 0.864 0.832 0.848 0.924
Our P 0.966 0.807 0.832 0.868 0.817 0.826 0.724

configuration R 0.897 0.960 0.970 0.934 0.961 0.964 0.984
(6 parameters) F1 0.931 0.877 0.896 0.901 0.884 0.890 0.835

MCC 0.908 0.839 0.864 0.869 0.847 0.856 0.840
Remove P 0.360 0.217 0.250 0.265 0.217 0.233 0.428
scale R 0.340 0.489 0.513 0.696 0.475 0.495 0.416

(4 parameters) F1 0.350 0.301 0.337 0.385 0.298 0.317 0.423
MCC 0.305 0.260 0.299 0.373 0.256 0.277 0.419

Remove P 0.173 0.103 0.115 0.355 0.105 0.109 0.242
curvature R 0.292 0.290 0.277 0.783 0.290 0.286 0.222

(3 parameters) F1 0.217 0.152 0.163 0.489 0.155 0.158 0.232
MCC 0.152 0.079 0.094 0.484 0.084 0.087 0.227

Table 3. Precision, recall, F1 and MCC computed on the 2-cubes (with a Gaussian noise generated with different value of 𝜎) and
Angle models of the Default evaluation set (see Table 1) for the different parameterization of PCEDNet.

Comparison of classifications with two and three classes. As previously stated, PCEDNet outputs three classes corre-
sponding to sharp-edges, smooth-edges and non-edges. However if edges are defined as sharp features only (i.e. the ABC
dataset), results from the smooth-edge class does not bring significant quantitative information and only the sharp-edge
class is of interest. In that case, we consider the sharp-edge as the unique positive class, and merge the smooth-edge
and non-edge classes as the negative class. When a more fuzzier definition is used for edges, as for the SHREC dataset
where both rounded and sharp edges co-exists, we present additional results where the positive class is defined either
as sharp edge only, or, as the union of sharp-edges and smooth-edges classes. Accordingly, three-classes approaches are
trained on two-classes datasets as if no vertex is labelled as smooth-edge, but only has sharp-edge or non-edge.

5.1 Ablation study

In this Section, we validate both the choice of input parameters and the number of output classes (i.e two or three) of
PCEDNet. Quantitative results are given respectively in Tables 3 and 4.

SSM. Our Scale-Space Matrix is composed of 6 parameters computed by differentiating the GLS implicit surface
both in scale and space. In order to measure the relevance of our parameterization, we tested four alternative sets
of parameters, ranging from 28 to 3 parameters per scale. For each scenario, the PCEDNet architecture is modified as
follows: the number of weights of the four first layers is set according to the number of input parameters, as well as the
connection between the fourth and fifth layers. We define the different parameter sets as follows:

• 28 parameters: taking all the derivatives of the GLS descriptor in scale and space,
• 7 parameters: keeping only the derivatives that are invariant to rigid transformations (rotation, translation and
scale), leading to

[
𝜏𝑡
𝑖

𝜅𝑡
𝑖

𝑘1𝑡
𝑖

𝑘2𝑡
𝑖

𝛿𝜏𝑡
𝑖

𝛿𝑡

𝛿𝜅𝑡
𝑖

𝛿𝑡
𝜙 (𝑆𝑡p𝑖)

]
,

• 6 parameters (selected PCEDNet input): removing 𝑘2, which is linearly dependent to 𝑘1 and 𝜅,
• 4 parameters: removing scale information from PCEDNet input, leading to

[
𝜏𝑡
𝑖

𝜅𝑡
𝑖

𝑘1𝑡
𝑖

𝜙 (𝑆𝑡p𝑖)
]

• 3 parameters: removing curvature information from PCEDNet input, leading to
[
𝜏𝑡
𝑖

𝛿𝜏𝑡
𝑖

𝛿𝑡
𝜙 (𝑆𝑡p𝑖)

]
.

Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 15

2-cubes (𝜎)
Angle0 0.01 0.02 0.03 0.12 0.14

PCEDNet-2C P 0.576 0.298 0.366 0.364 0.308 0.330 0.435
(Default) R 0.564 0.610 0.652 0.689 0.611 0.614 0.278

F1 0.570 0.400 0.469 0.477 0.410 0.430 0.339
MCC 0.539 0.374 0.445 0.458 0.383 0.402 0.344

PCEDNet P 0.966 0.807 0.832 0.868 0.817 0.826 0.724
(Default) R 0.897 0.960 0.970 0.934 0.961 0.964 0.984
(Ours) F1 0.931 0.877 0.896 0.901 0.884 0.890 0.835

MCC 0.908 0.839 0.864 0.869 0.847 0.856 0.840
Table 4. Precision, Recall, F1 and MCC computed on the 2-cubes (with different Gaussian noise) and Angle models of the Default
evaluation set (presented in Table 1) for PCEDNet and its two-classes implementation PCEDNet-2C. As we can see, the addition of the
third class improves the classification quality of the sharp-edge class.

We trained these five parameter configurations on Default and reported in Table 3 the Precision, Recall and F1 scores
when applied on the evaluation set. As we compare 3-classes approaches on a 3-classes dataset in this experiment, we
sum-up TP and FP for both the sharp-edge and smooth-edge labels, and use non-edge for negatives. Our choice of 6
parameters is validated as it always has the higher Recall, F1 and MCC, while providing a good precision in comparison
with the other sets of parameters.

Number of output classes. We measure the impact of the smooth-edge class on the quality of the sharp-edge classifi-
cation by implementing a version, denoted PCEDNet-2C, in which the decision layers return scores for 2 classes instead
of 3. We trained PCEDNet-2C on the Default dataset by considering points labelled as sharp-edge for one class and
as the union of non-edge and smooth-edge for the other class. We report in Table 4 the scores obtained by PCEDNet

and PCEDNet-2C on the evaluation set. We can see that the addition of the third class allows PCEDNet to obtain higher
scores than PCEDNet-2C, for all the metrics. Note that one class could have been the union of sharp and smooth edges
and the other the non-edges. This increases the false positive rate and leads to the same best parameterization, with
overall lower performance.

5.2 Training and classification times

In this section we compare the learning and evaluation speed of our specialized approach to more versatile networks
based on PointNet [Qi et al. 2016a], the state of the art solution for point-based learning and semantic shape analysis.
Among the different possibilities, we selected ECNet [Yu et al. 2018] and PCPNet [Guerrero et al. 2018], as they can be
easily adapted to our more geometric and focused problem.

Experimental setup for compared approaches. For PCPNet, we run a specialization training in order to adapt its
original output from point normals estimation to point classification. We removed the output normalization from their
architecture, and trained the last layers of the network (using the default hyperparameters provided by the authors)
using our data (400 epochs on Default, and 50 epochs on ABC). This allows us to take advantage of PCPNet original
training for the first layers. For ECNet, we directly use the pre-trained version provided by the authors. In the nutshell,
this approach oversample an input point cloud, and label each generated point as edge or non-edge. We retrieve the
classification of the input point cloud by assigning to each input point the label of the closest output sample. Both
PCPNet and ECNet approaches require more computation power and memory than provided by our 40-cores Intel
Xeon-E5 to handle large data sets as ABC. For training and evaluating these networks, we thus used a NVIDIA Quadro
RTX 6000 with 24GB of G-RAM. This is reminded by a ∗ in the text when we report timings.

Manuscript submitted to ACM

16 Himeur, et al.

Method PCPNet PCEDNet

Default 40:00 m * 3:11 m
ABC 19:00:00 h * 22:11 m

Table 5. PCPNet training times on the Default and ABC datasets. We also remind the PCEDNet training times for comparisons.

Training. We trained PCPNet with three classes on our Default dataset (denoted PCPNet (Default)) and with two
classes on ABC (denoted PCPNet (ABC)). As shown by the loss plot in Figure 9-left, training of the deep architecture of
PCPNet converge to relatively high loss on our Default training set. Also, despite several attempts, PCPNet couldn’t
stabilise on SHREC due to the high variability of the annotations. Training on a larger dataset such as ABC (see the
loss plot in Figure 9-right) is better adapted and enables the convergence of PCPNet training with low loss. Regarding
the timings, PCPNet requires significantly longer training than our approach (more than 500 times slower on ABC), as
reported in Table 5.

Classification. In addition to ECNet and PCPNet, we compare our approach with CA [Bazazian et al. 2015] (for all our
experiments, we used 10 neighbors and threshold=0.65 , except for Munich for which we used 20 neighbors to handle
sparse sampling), FEE [Mérigot et al. 2011] (we specifically adjusted parameters for each dataset), our baselines CNN and
FC. We report in Figure 10 the evolution of the classification timings (in logarithmic scale) when increasing the point
cloud size. We observe for PCEDNet, FC and CNN that scale-space calculation (which can be done in pre-process) requires
more time than the classification itself. It also illustrates how fast our compact network architecture is, compared to
more complex and computationally intensive architectures as PCPNet and ECNet. Finally, PCPNet and ECNet require
more than 24 GB G-RAM to handle large point clouds and we thus could not provide the timings for the classification
of our larger models by these networks.

5.3 Quantitative evaluation

We now compare the classification produced by the aforementioned approaches with ground truth classification on
datasets Default, ABC and SHREC.

Default dataset. Results are reported in Table 6 and illustrated in both Figure 12 and the accompanying website.
Both CNN and FC are strong baselines getting significantly higher MCC scores than most methods from previous work.
PCPNet exhibits very different behaviors depending on the training set. For instance, PCPNet (ABC) cannot disambiguate

0 10 20 30 40

0.25

0.5

0.75

1

Lo
ss

Epochs

T

V

0

Epochs

T

V

0 10 20 30 40 50
0

0.4

0.8

1.2

Lo
ss

Fig. 9. PCPNet: learning curves measured on Training (T) and Validation (V) sets on the (left) Default and (right) ABC datasets.

Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 17

Fig. 10. Time (in seconds) required by the approaches presented in Table 9 to classify different models.

Fig. 11. Distribution of the Precision/Recall scores display as scatter plot (each point cloud is a sample) and its associated density
function for the ABC dataset. Interactive plots are provided in the joined website.

between sampling variation and edges (point clouds in ABC have very regular sampling), which leads to very high
false-detection rates. PCPNet (Default) does not exhibits this issue, however it shows very limited detection for sharp

Method Precision Recall MCC F1 Accuracy
CA 0.490 0.880 0.506 0.628 0.752
FEE 0.341 0.814 0.471 0.480 0.879
PCPNet (Default) 0.722 0.198 0.301 0.310 0.789
PCPNet (ABC) 0.081 0.399 0.221 0.136 0.298
ECNet 1.000 0.457 0.656 0.620 0.960
CNN (Default) 0.546 0.955 0.623 0.694 0.807
FC (Default) 0.618 0.958 0.682 0.753 0.849
PCEDNet (Default) 0.826 0.952 0.857 0.890 0.946
PCEDNet-2C (ABC) 0.224 0.598 0.286 0.313 0.850

Table 6. Quantitative evaluation on Default: median scores (see score of the other approaches in the accompanying website).

Manuscript submitted to ACM

18 Himeur, et al.

CA FEE PCPNet PCPNet ECNet PCEDNet

Fig. 12. Classification on Default, model 2-cubes: 𝜎 = 0 (top) and 0.14 (bottom). See results of the other approaches in the
accompanying website.

ground truth ECNet PCPNet (Default) CNN (Default) FC (Default) PCEDNet (Default)

CA FEE PCPNet (ABC) CNN-2C (ABC) FC-2C (ABC) PCEDNet-2C (ABC)

Fig. 13. Model 7029 of the ABC dataset.

edges. ECNet produces very precise classifications even on noisy models, but overall misses to classify 50% of the points
labeled as edges in ground truth (high precision and low recall). Regarding single-scale fitting-based approaches (i.e. CA
and FEE), both approaches fail at handling outliers (for FEE, we used the following parameters: r= 0.025, R= 0.05 and
th= 0.16). PCEDNet (Default) produces the best results on this dataset, getting significantly higher indicators than other
approaches. Also, PCEDNet-2C (ABC) shows better adaptation than PCPNet (ABC), with higher scores for all indicators.

ABC dataset. Due to the large size of ABC (7166 models) we present in Figure 11 (and in the accompanying website)
the results as a precision/recall scatter plots, which provide a more readable overall view of the performance of the
different approaches. For each approach, we plot each 3D model as a point sample, and display the resulting density

Method Precision Recall MCC F1 Accuracy
CA 0.348 0.944 0.520 0.504 0.881
FEE 0.135 1.000 0.062 0.235 0.278
ECNet 0.425 0.648 0.423 0.460 0.910
PCPNet (ABC) 0.954 0.756 0.797 0.807 0.979
CNN (Default) 0.530 0.995 0.648 0.689 0.922
CNN-2C (ABC) 0.507 0.983 0.646 0.662 0.928
FC (Default) 0.452 0.679 0.469 0.513 0.921
FC-2C (ABC) 0.470 0.871 0.555 0.581 0.920
PCEDNet (Default) 0.746 0.745 0.688 0.713 0.966
PCEDNet-2C (ABC) 0.735 0.984 0.808 0.822 0.970
PCEDNet-2C (Default) 0.662 0.936 0.708 0.730 0.958

Table 7. Quantitative evaluation on ABC: median scores.

Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 19

maps as 2D-contour maps. We use the Hot colormap, with density values ranging from 50 (light yellow) to 1000 (dark
red). A perfect classification result would lead to a Dirac distribution centered at location (1,1) and with magnitude 7166.
Most of the analysed approaches are producing classifications with high recall, but differ by their capacity to reach
high precision. Table 7 shows the median statistical scores obtained by each method on the whole dataset. Single-scale
fitting-based approaches, e.g., CA and FEE (we use r= 0.4, R= 0.8 and th= 0.16 for this dataset) exhibit very high
recall but low precision (lower than 0.4) with the classification of a lot of FP. As shown in supplementary materials,
these approaches produce good results for very clean and simple geometries, but fail at analyzing thin objects (i.e.
neighborhood might include two pieces of opposite surfaces, see FEE in Figure 13) and other intricate shapes. CNN
follows a similar pattern, but is able to produce better classifications with high precision (MCC ≈ 0.65). FC produces
results with lower quality (MCC < 0.55) and higher dependency to the training set. Both FC (Default) and FC-2C (ABC)
are however competitive compared to state of the art methods. Overall, the quality of ECNet results (in term of MCC,
F1 and Accuracy) is overall better than fitting-based approaches, but lower than our baselines. All the variants of our
PCEDNet produce better results, with MCC scores above 0.8 for PCEDNet-2C (ABC). Despite the large difference between
the training sets of Default and ABC, our approach PCEDNet (Default) produces classifications with better MCC than
competitors (MCC = 0.688), but at the cost of a recall loss. As shown in the joined website, the classifications produced
by both PCEDNet (Default) and PCEDNet-2C (ABC) remain visually convincing despite quantitative differences against
the ground truth. A notable exception to the global trend high-recall/variable-precision is PCPNet (ABC), which exhibit
higher precision/lower recall than any other approach. It also reaches comparable scores than our approach (e.g. MCC,
F1, Accuracy), but visual inspection reveals that PCPNet (ABC) tends to miss some edges entirely (lower recall), while
our approach finds relatively thicker edges (lower precision). Also, PCPNet (ABC) requires 3 days to process the entire
dataset (instead of 3 hours for PCEDNet-2C (ABC)).

SHREC dataset. This dataset has been originally designed to evaluate curve detection algorithms on organic and
relatively smooth objects with a comparison to human labelling. In addition, some objects have strong semantics (e.g.
human face), and we observe that the ground-truth classification seems to take into account this semantic rather than
strictly respecting geometric features. This makes this SHREC dataset very challenging to label, as illustrated in Table 8

Method Prec. Recall MCC F1 Accuracy
CA 0.434 0.449 0.390 0.442 0.876
FEE 0.191 0.527 0.151 0.278 0.727
PCPNet (Default) 0.000 0.000 0.000 0.009 0.893
PCPNet (ABC) 0.399 0.250 0.211 0.310 0.943
ECNet 0.365 0.503 0.341 0.397 0.845
CNN (Default) 0.468 0.928 0.570 0.611 0.911
CNN (Default)~ 0.299 0.945 0.429 0.446 0.802
CNN-2C (ABC) 0.271 0.496 0.234 0.315 0.818
CNN-2C (SHREC) 0.207 0.881 0.202 0.248 0.622
FC (Default) 0.392 0.538 0.391 0.455 0.880
FC (Default)~ 0.313 0.909 0.428 0.461 0.793
FC-2C (ABC) 0.389 0.693 0.369 0.438 0.846
FC-2C (SHREC) 0.406 0.715 0.392 0.480 0.849
PCEDNet (Default) 0.495 0.377 0.344 0.437 0.916
PCEDNet (Default)~ 0.349 0.898 0.444 0.489 0.814
PCEDNet-2C (Default) 0.462 0.623 0.455 0.510 0.868
PCEDNet-2C (ABC) 0.479 0.621 0.394 0.561 0.901
PCEDNet-2C (SHREC) 0.441 0.872 0.426 0.522 0.874

Table 8. Quantitative evaluation on SHREC: median scores. For 3-classes methods marked with ~, we compare both the smooth and
sharp edges classes with the ground truth, i.e. Positives=Sharp+Smooth.

Manuscript submitted to ACM

20 Himeur, et al.

Dataset #obj #vert. CA FEE PCPNet EC GLS CNN (total) FC (total) PCEDNet (total)
Loudun 1 1 1M 14.30 s 1:30 m 35:00 m * - 19.30 s 0:54 (1:13) m 1.80 (21.10) s 2.10 (21.40) s
Empire 1 1.2M 15.70 s 2:55 m 54:22 m * 5:43 m * 36.40 s 0:53 (1:29) m 1.80 (38.20) s 2.10 (38.50) s
Lans 1 1.23M 16.40 s 3:46 m 1:00:08 h * 6:13 m * 21.00 s 0:55 (1:16) m 1.80 (22.80) s 2.10 (23.10) s
Church 1 1.9M 23.40 s 5:53 m 1:46:40 h * - 58.40 s 1:26 (2:24) m 0:02 (1:01) m 0:03 (1:01) m

Pisa Cathedral 1 2.5M 31.80 s 6:03 m 2:56:40 h * - 53.60 s 1:57 (2:50) m 3.90 (57.50) s 4.70 (58.30) s
Euler 1 3.9M 51.20 s 13:22 m - - 1:55 m 3:00 (4:55) m 0:06 (2:01) m 0:07 (2:02) m
Munich 1 6M 1:31 m 26:33 m - - 1:59 m 4:41 (6:41) m 0:09 (2:09) m 0:11 (2:10) m

Train St. 1 12.45M 2:35 m 50:44 m - - 5:31 m 9:17 (14:49) m 0:19 (5:50) m 0:25 (5:57) m
Loudun 35 1 35M 7:29 m 1:30:25 h - - 9:52 m 26:38 (36:30) m 1:06 (10:59) m 1:09 (11:02) m
Default 8 55k 0.53 s 4.41 s 22.11 s* 2.09 s* 1.08 s 2.03 (3.11) s 0.30 (1.38) s 0.25 (1.33) s
SHREC 15 654k 9.70 s 41.47 s 5:54 m * 7.20 s* 14 s 28.58 (42.58) s 3.10 (17.10) s 3.10 (17.10) s
ABC 7167 312.3M 3:15:00 h 17:50:00 h 7 d * 20 d * 2:35:00 h 1:25:00 (4:00:00) h 0:25:40 (3:00:40) h 0:25:30 (3:00:30) h

Table 9. Timing comparison for classification, where (s) stands for seconds, (m) for minutes, (h) for hours, and (d) for days. For
datasets (e.g., Default, SHREC and ABC) we report the time needed to process all the models. The column GLS corresponds to the
precompuation of the GLS descriptors. For columns CNN, FC and PCED, we report first the classification time, followed in brackets by
the total_time = GLS+reported_time. Timings marked with * have been obtained using dedicated hardware (NVDIA RTX 6000).

ground truth ECNet PCPNet (Default) PCEDNet (Default)

PCEDNet-2C (ABC)PCPNet (ABC)FEECA

Fig. 14. Model 7 of the SHREC dataset. Results for CNN and FC can be found in the joined website.

by the lower scores obtain by all approaches, in comparison to the other datasets. In particular, PCPNet (Default) fails at
classifying edge points (MCC = 0). PCPNet (ABC) produces better results, but relatively low scores as it detects borders as
edges, which increases False-Positive detection. On this dataset, ECNet tends to produce noisy and thick edges, getting
lower score than CA. CA and FEE (we use r= 2, R= 4 and th= 0.16 for this dataset) produce more convincing results, with
CA reaching MCC= 0.39. CNN (Default) get the best scores on this dataset (both MCC and F1), but the same architecture
trained on SHREC gets lower detection rate. Both FC and PCEDNet show better stability w.r.t. the training set (MCC ≈ 0.4
for all variants), but lower score than CNN. Regardless to the quantitative analysis, the results produced by PCEDNet

(Default) are very interesting on this dataset. By enforcing the detection of both smooth and sharp edges, it better
adapts to the smooth nature of the analysed objects and it provides very pertinent results as illustrated in Figure 14.
Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 21

CA FEE PCPNet (Default) PCPNet (ABC) ECNet PCEDNet (Default)

Fig. 15. Lans model. Results for CNN and FC can be found in the joined website.

5.4 Visual evaluation

In this section we present visual results on acquired datasets without ground truth labelling. All these scenes are
presented in more details in the accompanying video and in the joined website. For all the results presented in this
section, we compare PCPNet (Default), PCPNet (ABC) and ECNet (on smallest scenes only), FC (Default), CNN (Default),
PCEDNet (Default), CA and FEE. Table 9 shows precomputation (GLS) and classification times for all approaches. We
see that processing time for PCEDNet (including precomputation) remains of the same order of magnitude than less
robust approaches as CA and FEE, and outperforms PCPNet and ECNet (up to two orders of magnitude). Once trained,
our approach also avoids the tedious parameter tuning of geometric methods.

Figure 15 represents a part of Lans without outliers and with very few noise. In this example, FEE detects larger
scale edges cleanly, yet it misses fine details. CA detects edges, but it still struggles with surface noise and irregularities.
PCPNet has an improved behavior over the noisy model and is able to detect smooth-edges. However, it still fails at
classifying sharp-edges. Similarly to FEE and PCPNet, FC extracts large scale edges leaving out finer details, which
highlights the importance of scale separation layers in PCEDNet network architecture. Both CNN and PCEDNet produce
visually convincing results, but CNN does not detect some fine details that are adequately detected by PCEDNet. ECNet
also produces good results on this example, detecting most of the edges and some of the thin details.

Figure 16 presents the behavior of each method when processing models with important noise and lots of outliers. As
observed on synthetic datasets, ECNet is strongly penalized by the outliers, and most of the flat areas are misclassified
as edges. CA detects all the edge points on the synthetic model but it also considers the outliers as edges. PCPNet
classification is weakened by the outliers and does not provide any positive results. FC shows results similar to CA, the
network is capable of extracting different edges, yet it is still very sensitive to outliers. CNN and PCEDNet both obtain a
high recall on edges, with PCEDNet being the least sensitive to noise.

CNN, FC and PCEDNet rely on the same parameterization. We thus provide in Figures 17 a closer comparison of the
results produced by these architectures. In Figures 17, even though all networks generate similar results, the CNN and
FC become less accurate when processing irregular surfaces as trees, cars, light poles, etc.

Figure 18 shows how our approach performs on a large point cloud (6M points) in comparison with CA and FEE (other
approaches require too much memory/time). Munich exhibits common irregularities of acquired data, i.e. variable point
densities, large gaps, scan noise, and volumetric objects (e.g., trees). PCEDNet (Default) produces cleaner detection and
is less affected by acquisition artefacts than the other approaches.

5.5 Interactive learning

As shown in Table 5, PCEDNet requires very low training time, and is stable for very small training sets as our Default.
We illustrate how such a flexible network can be trained interactively to better adapt to user wishes and data specificity.

Manuscript submitted to ACM

22 Himeur, et al.

CA FEE PCPNet PCPNet ECNet PCEDNet

(Default) (ABC) (Default)

Fig. 16. Empire model. This point cloud contains a clean structure with a severe amount of outliers. Results for CNN and FC can be
found in the joined website.

CNN (Default) FC (Default) PCEDNet (Default)

Fig. 17. Church. Results for FEE, FC and PCPNet can be found in the joined website.

Our interactive training system performs as follows: the user loads a point cloud on which GLS descriptors are
precomputed. This is done in less than 20 seconds for 1M points. Then, the user manually labels some points of the two
Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 23

CA FEE PCEDNet (Default)

Fig. 18. Munich model (see Results for CNN and FC in the joined website).

User input

Non-edge

Sharp

Smooth

Classification

User input

Classification

Fig. 19. Interactive training: user inputs and classification results.

classes (sharp edge and non-edge) or the three classes (sharp edge, smooth edge and non-edge). We observed that the
non-edge class should contain more points than the two others. This training sets are provided to the PCEDNet network
initialized with random values, which learns for 5k epochs in around 10 seconds for approximately 10k input points.
As for any other dataset, the number of points per class is automatically balanced during training. Once trained, the
network classifies the whole point cloud in around 2 seconds per 1M points. Upon classification, the user can refine the
training set according to the network output. If he does so, the network is trained again with the updated learning sets
(as training is fast enough and modifying the previous training is less efficient).

We illustrate in Figures 1-c and 19, and in the accompanying video how this tool can be used to achieve high quality
classification while allowing the network to infer different edge definitions depending on the user input.

Manuscript submitted to ACM

24 Himeur, et al.

5.6 Complementary experiments

Variation of sampling (minimum scale). The features computed in the SSM are influenced by the minimum scale 𝑠min,
estimated from the density of the point cloud. We show in Figure 20 how our approach behaves when changing the
point cloud density by subsampling, while keeping the automatic estimation of 𝑠min. This is illustrated on the Loudun
tower, initially composed of 35 millions points, and subsampled down to 15, 5 and 1 million points. Unsurprisingly,
decreasing the resolution reduces the quantity of details and leads to thicker edges. However, our classification remains
stable and PCEDNet still finds the position of edges, even for low densities, and without requiring the user to set any
parameter value.

Variation of maximum scale. We also show in Figure 21 how our classification behaves when changing the maximum
scale. Thanks to the logarithmic scale sampling and the scale invariance property of the SSM entries, our approach
provides stable results even though the maximum scale is divided by 10 or multiplied by 2.5.

Surface reconstruction algorithm. Our network is parameterized using the Algebraic Point Set Surfaces (APSS) [Guen-
nebaud and Gross 2007], which are known to be stable and reliable even at large scales. We illustrate in Figure 22 the
performance of our classifier when computing the parameterization with different approaches: covariance plane fitting
(also used in Bazazian et al. [2015]), plane-based point set surfaces [Alexa et al. 2001] and algebraic sphere fitting (same
fitting as APSS but without the Moving Least Squares -MLS- projection). For each variant we compute similar values as
our GLS descriptor, with derivatives estimated using finite differences. We clearly observe that the use of sphere fitting
rather than plane fitting improves the classification, and the best results are always obtained using MLS projection.

Fig. 20. Loudun: PCEDNet classification with different densities: 1, 5, 15 and 35 millions points from top left to bottom right.
Manuscript submitted to ACM

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 25

𝑠max = 0.02 𝑠max = 0.05 𝑠max = 0.20 𝑠max = 0.50

Fig. 21. Classification results when varying the maximum scale when computing the GLS for the analyzed object.

Fig. 22. Impact of the surface reconstruction algorithm on the classification. From left to right: covariance plane fitting (used
by Bazazian et al. [2015]), point set surfaces [Alexa et al. 2001], algebraic sphere fitting, algebraic point set surfaces [Guennebaud and
Gross 2007] (used in this work).

6 DISCUSSION AND CONCLUSION

We introduced a new parameterization together with its dedicated neural network architecture (PCEDNet) specially
designed for the classification of edges in point clouds. PCEDNet outperforms both state of the art methods such as CA,
FEE, ECNet and PCPNet, and baselines as CNN and FC. PCEDNet is also remarkably compact by being only composed
of about 2100 weights. Given this small size, it is faster than the other approaches tested in this work. Both CNN and
PCEDNet achieve similar very good results on synthetic point clouds, which shows that our parameterization based
on GLS descriptors is very efficient to encode the point clouds features required for edge classification. Coupled with
PCEDNet, it provides a very compact multi-scale representation that captures local geometric properties with reduced
sensitivity with respect to noise, as can be seen on the various tests performed on real point cloud scans. The training

Manuscript submitted to ACM

26 Himeur, et al.

and classification of our approach is also sufficiently fast to enable interactive training and classification from direct
user inputs.

Limitations: APSS requires oriented normals, which may be tedious to compute accurately in some cases. For
all our experiments with point clouds without normals, we got good classification results by estimating consistent
normal vectors using Meshlab [Cignoni et al. 2008], without requiring human intervention. An interesting future
work would be to consider alternative fitting techniques that do not require oriented normals [Chen et al. 2013b].
Regarding performance, SSM precomputation is currently the bottleneck of the approach, however we believe that a
GPU implementation would enable near real-time classification, the most computationally intensive task being the
neighborhood queries. Theoretically, SSM is by nature limited to surfaces only, alternative representations [Digne et al.
2018] might be considered in future work to handle lines and volumes.

Perspectives: Other experiments may be conducted to improve the network layout, for instance n by n scales
concatenation. An interesting direction for future work could be the study of the extension of this architecture to other
geometrical labelling tasks, but also to semantic analysis.

REFERENCES
Syeda Mariam Ahmed, Yan Zhi Tan, Chee-Meng Chew, Abdullah Al Mamun, and Fook Seng Wong. 2018. Edge and Corner Detection for Unorganized 3D

Point Clouds with Application to Robotic Welding. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018), 7350–7355.
Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and Claudio T. Silva. 2001. Point Set Surfaces. In Proceedings of the

Conference on Visualization ’01 (San Diego, California) (VIS ’01). IEEE Computer Society, Washington, DC, USA, 21–28. http://dl.acm.org/citation.cfm?
id=601671.601673

Dena Bazazian, Josep R Casas, and Javier Ruiz-Hidalgo. 2015. Fast and Robust Edge Extraction in Unorganized Point Clouds. In Proceeding of International
Confere on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 1–8.

Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gaël Guennebaud, Joshua A. Levine, Andrei Sharf, and Claudio T. Silva. 2017. A
Survey of Surface Reconstruction from Point Clouds. Comput. Graph. Forum 36, 1 (Jan. 2017), 301–329. https://doi.org/10.1111/cgf.12802

Alexandre Boulch. 2019. Generalizing Discrete Convolutions for Unstructured Point Clouds. (2019). https://doi.org/10.2312/3dor.20191064
Alexandre Boulch, Joris Guerry, Bertrand Le Saux, and Nicolas Audebert. 2018. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation

networks. Computers & Graphics 71 (2018), 189 – 198. https://doi.org/10.1016/j.cag.2017.11.010
Alexandre Boulch and Renaud Marlet. 2016. Deep Learning for Robust Normal Estimation in Unstructured Point Clouds. Computer Graphics Forum 35, 5

(2016), 281–290. https://doi.org/10.1111/cgf.12983 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12983
Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert. 2017. Unstructured Point Cloud Semantic Labeling Using Deep Segmentation Networks.

In Eurographics Workshop on 3D Object Retrieval, Ioannis Pratikakis, Florent Dupont, and Maks Ovsjanikov (Eds.). The Eurographics Association.
https://doi.org/10.2312/3dor.20171047

M. M. Bronstein and I. Kokkinos. 2010. Scale-invariant heat kernel signatures for non-rigid shape recognition. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. 1704–1711. https://doi.org/10.1109/CVPR.2010.5539838

CGAL. [n.d.]. Feature Edges Estimation. The Computational Geometry Algorithms Library ([n. d.]).
Jiazhou Chen, Gaël Guennebaud, Pascal Barla, and Xavier Granier. 2013a. Non-Oriented MLS Gradient Fields. Computer Graphics Forum 32, 8 (2013),

98–109. https://doi.org/10.1111/cgf.12164 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12164
Jiazhou Chen, Gaël Guennebaud, Pascal Barla, and Xavier Granier. 2013b. Non-Oriented MLS Gradient Fields. Computer Graphics Forum 32, 8 (2013),

98–109. https://doi.org/10.1111/cgf.12164 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12164
Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. MeshLab: an Open-Source Mesh

Processing Tool. In Eurographics Italian Chapter Conference, Vittorio Scarano, Rosario De Chiara, and Ugo Erra (Eds.). The Eurographics Association.
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stoddart Barros, Adam Finkelstein, Thomas Funkhouser, and Szymon Rusinkiewicz. 2008.
Where Do People Draw Lines? ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3 (Aug. 2008).

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. 2017. ScanNet: Richly-annotated 3D Reconstruc-
tions of Indoor Scenes. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE.

Joel Daniels II, Tilo Ochotta, Linh K. Ha, and Cláudio T. Silva. 2008. Spline-based feature curves from point-sampled geometry. The Visual Computer 24, 6
(2008), 449–462. https://doi.org/10.1007/s00371-008-0223-2

Kris Demarsin, Denis Vanderstraeten, Tim Volodine, and Dirk Roose. 2007. Detection of closed sharp edges in point clouds using normal estimation and
graph theory. Computer-Aided Design 39, 4 (2007), 276–283.

Manuscript submitted to ACM

http://dl.acm.org/citation.cfm?id=601671.601673
http://dl.acm.org/citation.cfm?id=601671.601673
https://doi.org/10.1111/cgf.12802
https://doi.org/10.2312/3dor.20191064
https://doi.org/10.1016/j.cag.2017.11.010
https://doi.org/10.1111/cgf.12983
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12983
https://doi.org/10.2312/3dor.20171047
https://doi.org/10.1109/CVPR.2010.5539838
https://doi.org/10.1111/cgf.12164
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12164
https://doi.org/10.1111/cgf.12164
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12164
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.1007/s00371-008-0223-2

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 27

J. Digne, S. Valette, and R. Chaine. 2018. Sparse Geometric Representation Through Local Shape Probing. IEEE Transactions on Visualization and Computer
Graphics 24, 7 (July 2018), 2238–2250. https://doi.org/10.1109/TVCG.2017.2719024

Leandro A.F. Fernandes and Manuel M. Oliveira. 2012. A general framework for subspace detection in unordered multidimensional data. Pattern
Recognition 45, 9 (2012), 3566 – 3579. https://doi.org/10.1016/j.patcog.2012.02.033 Best Papers of Iberian Conference on Pattern Recognition and
Image Analysis (IbPRIA’2011).

Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. 2005. Robust Moving Least-Squares Fitting with Sharp Features. ACM Trans. Graph. 24, 3 (July
2005), 544–552. https://doi.org/10.1145/1073204.1073227

Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics. 249–256.

Gaël Guennebaud, Marcel Germann, and Markus Gross. 2008. Dynamic Sampling and Rendering of Algebraic Point Set Surfaces. Computer Graphics Forum
27, 2 (2008), 653–662. https://doi.org/10.1111/j.1467-8659.2008.01163.x arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2008.01163.x

Gaël Guennebaud and Markus Gross. 2007. Algebraic Point Set Surfaces. ACM Trans. Graph. 26, 3, Article 23 (July 2007). https://doi.org/10.1145/1276377.
1276406

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. 2018. PCPNet: Learning Local Shape Properties from Raw Point Clouds. Computer

Graphics Forum 37, 2 (2018), 75–85. https://doi.org/10.1111/cgf.13343
Stefan Gumhold, Xinlong Wang, and Rob Macleod. 2001. Feature extraction from point clouds. In Proceedings, 10th International Meshing Roundtable.

293–305.
Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K. Schindler, and M. Pollefeys. 2017. SEMANTIC3D.NET: A new large-scale point cloud classification

benchmark. In ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. IV-1-W1. 91–98.
Timo Hackel, Jan D. Wegner, and Konrad Schindler. 2016. Contour Detection in Unstructured 3D Point Clouds. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).
Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 2016. 3D Shape Segmentation with Projective Convolutional

Networks. CoRR abs/1612.02808 (2016). arXiv:1612.02808 http://arxiv.org/abs/1612.02808
Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo.

2019. ABC: A Big CAD Model Dataset for Geometric Deep Learning. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2019), 9593–9603.

M. Li and K. Hashimoto. 2017. Curve Set Feature-Based Robust and Fast Pose Estimation Algorithm. Sensors 1782, 17 (2017).
Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. 2018. PointCNN: Convolution On X-Transformed Points. In Advances in

Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates,
Inc., 820–830. http://papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf

Yangbin Lin, Cheng Wang, Jun Cheng, Bili Chen, Fukai Jia, Zhonggui Chen, and Jonathan Li. 2015. Line segment extraction for large scale unorganized
point clouds. ISPRS Journal of Photogrammetry and Remote Sensing 102 (2015), 172 – 183. https://doi.org/10.1016/j.isprsjprs.2014.12.027

Tony Lindeberg. 1993. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, Norwell, MA, USA.
Eric-Tuan Lê, Iasonas Kokkinos, and Niloy J. Mitra. 2020. Going Deeper with Lean Point Networks. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).
Daniel Maturana and Sebastian Scherer. 2015. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. In IEEE/RSJ International

Conference on Intelligent Robots and Systems. 922 – 928.
Nicolas Mellado, Matteo Dellepiane, and Roberto Scopigno. 2015. Relative scale estimation and 3D registration of multi-modal geometry using Growing

Least Squares. IEEE transactions on visualization and computer graphics 22, 9 (2015), 2160–2173.
Nicolas Mellado, Gaël Guennebaud, Pascal Barla, Patrick Reuter, and Christophe Schlick. 2012. Growing Least Squares for the Analysis of Manifolds in

Scale-Space. Comp. Graph. Forum 31, 5 (Aug. 2012), 1691–1701. https://doi.org/10.1111/j.1467-8659.2012.03174.x
Nicolas Mellado, Thibault Lejemble, Gaël Guennebaud, and Pascal Barla. 2020. Ponca: a Point Cloud Analysis Library.

https://github.com/poncateam/ponca/.
Aikaterini Mitropoulou and Andreas Georgopoulos. 2019. An Automated Process to Detect Edges in Unorganized Point Clouds. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information Sciences (2019), 99–105.
Aron Monszpart, Nicolas Mellado, Gabriel J. Brostow, and Niloy J. Mitra. 2015. RAPter: Rebuilding Man-made Scenes with Regular Arrangements of

Planes. ACM Trans. Graph. 34, 4, Article 103 (2015), 12 pages.
Q. Mérigot, M. Ovsjanikov, and L. J. Guibas. 2011. Voronoi-Based Curvature and Feature Estimation from Point Clouds. IEEE Transactions on Visualization

and Computer Graphics 17, 6 (2011), 743–756.
Keith Wei Liang Nguyen, A. Aprilia, Ahmad Khairyanto, Wee Ching Pang, Gerald Gim Lee Seet, and Shu Beng Tor. 2018. Edge detection from point cloud

of worn parts. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (2018), 595–600. https://doi.org/10.25341/D45C7S
Huan Ni, Xiangguo Lin, Xiaogang Ning, and Jixian Zhang. 2016. Edge detection and feature line tracing in 3d-point clouds by analyzing geometric

properties of neighborhoods. Remote Sensing 8, 9 (2016), 710.
Mark Pauly, Richard Keiser, and Markus Gross. 2003. Multi-scale Feature Extraction on Point-Sampled Surfaces. Computer Graphics Forum 22, 3 (2003),

281–289. https://doi.org/10.1111/1467-8659.00675
Manuscript submitted to ACM

https://doi.org/10.1109/TVCG.2017.2719024
https://doi.org/10.1016/j.patcog.2012.02.033
https://doi.org/10.1145/1073204.1073227
https://doi.org/10.1111/j.1467-8659.2008.01163.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2008.01163.x
https://doi.org/10.1145/1276377.1276406
https://doi.org/10.1145/1276377.1276406
https://doi.org/10.1111/cgf.13343
https://arxiv.org/abs/1612.02808
http://arxiv.org/abs/1612.02808
http://papers.nips.cc/paper/7362-pointcnn-convolution-on-x-transformed-points.pdf
https://doi.org/10.1016/j.isprsjprs.2014.12.027
https://doi.org/10.1111/j.1467-8659.2012.03174.x
https://doi.org/10.25341/D45C7S
https://doi.org/10.1111/1467-8659.00675

28 Himeur, et al.

Charles Ruizhongtai Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. 2017a. Frustum PointNets for 3D Object Detection from RGB-D Data.
CoRR abs/1711.08488 (2017). arXiv:1711.08488 http://arxiv.org/abs/1711.08488

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2016a. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. arXiv
preprint arXiv:1612.00593 (2016).

Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J. Guibas. 2016b. Volumetric and Multi-View CNNs for
Object Classification on 3D Data. CoRR abs/1604.03265 (2016). arXiv:1604.03265 http://arxiv.org/abs/1604.03265

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017b. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the 31st International Conference on Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., USA,
5105–5114. http://dl.acm.org/citation.cfm?id=3295222.3295263

H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M. Yang, and J. Kautz. 2018. SPLATNet: Sparse Lattice Networks for Point Cloud Processing. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2530–2539. https://doi.org/10.1109/CVPR.2018.00268

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. 2015. Multi-view convolutional neural networks for 3d shape recognition.
In Proc. ICCV.

H. Thomas, C. R. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and L. Guibas. 2019. KPConv: Flexible and Deformable Convolution for Point Clouds. In 2019
IEEE/CVF International Conference on Computer Vision (ICCV). 6410–6419.

E. Moscoso Thompson, G. Arvanitis, K. Moustakas, N. Hoang-Xuan, E. R. Nguyen, M. Tran, T. Lejemble, L. Barthe, N. Mellado, C. Romanengo, S. Biasotti,
and B. Falcidieno. 2019. Feature Curve Extraction on Triangle Meshes. In Eurographics Workshop on 3D Object Retrieval, Silvia Biasotti, Guillaume
Lavoué, and Remco Veltkamp (Eds.). The Eurographics Association. https://doi.org/10.2312/3dor.20191066

Chu Wang, Babak Samari, and Kaleem Siddiqi. 2018. Local Spectral Graph Convolution for Point Set Feature Learning. CoRR abs/1803.05827 (2018).
arXiv:1803.05827 http://arxiv.org/abs/1803.05827

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. 2019. Dynamic Graph CNN for Learning on Point
Clouds. ACM Transactions on Graphics (TOG) (2019).

Christopher Weber, Stefanie Hahmann, and Hans Hagen. 2010. Sharp Feature Detection in Point Clouds. In Proceedings of the 2010 Shape Modeling
International Conference (SMI ’10). IEEE Computer Society, USA, 175–186. https://doi.org/10.1109/SMI.2010.32

Christopher Weber, Stefanie Hahmann, Hans Hagen, and Georges-Pierre Bonneau. 2012. Sharp feature preserving MLS surface reconstruction based on
local feature line approximations. Graphical Models 74, 6 (2012), 335–345.

Martin Weinmann, Boris Jutzi, and Clément Mallet. 2013. Feature relevance assessment for the semantic interpretation of 3D point cloud data. In ISPRS
Annals, Vol. 5.

Andrew P. Witkin. 1987. Scale-space filtering. In Readings in Computer Vision. Elsevier, 329–332.
Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 2015. 3d shapenets: A deep representation for

volumetric shapes. In Proceedings of the IEEE conference on computer vision and pattern recognition. 1912–1920.
S. Xia and R. Wang. 2017. A Fast Edge Extraction Method for Mobile Lidar Point Clouds. IEEE Geoscience and Remote Sensing Letters 14, 8 (2017),

1288–1292.
Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. 2018. Spidercnn: Deep learning on point sets with parameterized convolutional filters. In

Proceedings of the European Conference on Computer Vision (ECCV). 87–102.
Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2018. EC-Net: An Edge-Aware Point Set Consolidation Network. In

Computer Vision – ECCV 2018, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer International Publishing, Cham,
398–414.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and Alexander J Smola. 2017. Deep Sets. In Advances in
Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran
Associates, Inc., 3391–3401. http://papers.nips.cc/paper/6931-deep-sets.pdf

Aite Zhao, Jianbo Li, and Manzoor Ahmed. 2020. SpiderNet: A spiderweb graph neural network for multi-view gait recognition. Knowledge-Based Systems
206 (2020), 106273. https://doi.org/10.1016/j.knosys.2020.106273

Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and J. Xiao. 2015. 3D ShapeNets: A deep representation for volumetric shapes.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1912–1920. https://doi.org/10.1109/CVPR.2015.7298801

Yin Zhou and Oncel Tuzel. 2017. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. CoRR abs/1711.06396 (2017). arXiv:1711.06396
http://arxiv.org/abs/1711.06396

APPENDICES

A GLS DESCRIPTORS AND DERIVATIVES

The APSS [Guennebaud and Gross 2007] defines a scalar field 𝑆 (p)u = [1 p𝑇 p𝑇 p] · u, where u = [𝑢𝑐 uℓ 𝑢𝑞] is the
vector of field parameters. The parameters of the algebraic sphere are obtained by normalizing these field parameters:
û = u/

√︃
| |uℓ | |2 − 4𝑢𝑐𝑢𝑞 . In the GLS [Mellado et al. 2012], the algebraic sphere parameters are reparameterized to

Manuscript submitted to ACM

https://arxiv.org/abs/1711.08488
http://arxiv.org/abs/1711.08488
https://arxiv.org/abs/1604.03265
http://arxiv.org/abs/1604.03265
http://dl.acm.org/citation.cfm?id=3295222.3295263
https://doi.org/10.1109/CVPR.2018.00268
https://doi.org/10.2312/3dor.20191066
https://arxiv.org/abs/1803.05827
http://arxiv.org/abs/1803.05827
https://doi.org/10.1109/SMI.2010.32
http://papers.nips.cc/paper/6931-deep-sets.pdf
https://doi.org/10.1016/j.knosys.2020.106273
https://doi.org/10.1109/CVPR.2015.7298801
https://arxiv.org/abs/1711.06396
http://arxiv.org/abs/1711.06396

PCEDNet : A Neural Network for Fast and Efficient Edge Detection in 3D Point Clouds 29

compute its geometric parameters: 𝜏 = 𝑆 (p)û (p) the local relief, 𝜂 =
∇𝑆 (p)û (p)

| |∇𝑆 (p)û (p) | | the normal vector and 𝜅 = 2𝑢𝑞 the
mean curvature.

The Scale-Space Jacobian of the GLS parameters if defined as a 5 × 4 matrix:[
𝛿𝜏
𝛿x

𝛿𝜂𝑥
𝛿x

𝛿𝜂𝑦

𝛿x
𝛿𝜂𝑧
𝛿x

𝛿𝜅
𝛿x

𝛿𝜏
𝛿𝑡

𝛿𝜂𝑥
𝛿𝑡

𝛿𝜂𝑦

𝛿𝑡

𝛿𝜂𝑧
𝛿𝑡

𝛿𝜅
𝛿𝑡

]
,

where 𝛿x and 𝛿𝑡 are the derivatives in scale and space respectively. 𝑘1 is computed by projecting 𝛿𝜂

𝛿x on the surface
tangent plane, which provides an estimate of the second fundamental form.

B SCORES USED FOR QUANTITATIVE COMPARISON

The scores used in Section 5 are defined as follows:
Precision (also denoted positive predictive value – PPV) measures the proportion of positive identifications that are

actually correct (the higher, the better). It is defined as:

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
.

Recall (also denoted sensitivity, hit rate, or true positive rate – TPR) measures the proportion of actual positives that
are correctly identified (the higher, the better). It is defined as:

recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.

The Matthews Correlation Coefficient (MCC) is a correlation coefficient between the observed and predicted binary
classifications; it returns a value in [-1 : 1]. A coefficient of 1 represents a perfect prediction, 0 no better than random
prediction and -1 indicates a total disagreement between prediction and observation. It is defined as:

MCC =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)
.

F1 score is a measure of a test accuracy. For binary classification, F1 is defined as follows:

F1 = 2.precision × recall
precision + recall .

Accuracy measures is the fraction of predictions our model got right. For binary classification, accuracy is defined as:

accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Related Work
	2.1 Point cloud parameterization
	2.2 Network architectures
	2.3 Edge detection

	3 Method
	3.1 Problem statement
	3.2 Scale-Space Matrix
	3.3 Our network: PCEDNet
	3.4 Baseline models

	4 Experimental setup
	4.1 Point cloud dataset
	4.2 Networks training

	5 Results
	5.1 Ablation study
	5.2 Training and classification times
	5.3 Quantitative evaluation
	5.4 Visual evaluation
	5.5 Interactive learning
	5.6 Complementary experiments

	6 Discussion and conclusion
	References
	A GLS Descriptors and Derivatives
	B Scores used for quantitative comparison

